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ABSTRACT

Modern machine learning problems are predominantly non-convex, often containing a potentially
infinite number of local minima that can hinder gradient-based algorithms from converging to global
solutions or those that generalize well. Since traditional wisdom usually assumes that local solutions
are not escapable via such algorithms, existing works mostly focused on how randomized updates
could escape saddle points to combat the complex landscape. In this work, we challenge this belief by
demonstrating a deterministic approach for escaping local minima in the non-convex matrix sensing
problem. We introduce LEAC (Lift, Escape, Approximate, and Collapse), a new algorithm that
leverages simulated over-parametrization to find deterministic escape directions. Starting from a local
minimum in the matrix space, LEAC exploits tensor-space geometry to approximate the effect of a
high-dimensional escape step. This deterministic update guarantees a strictly lower objective value
than that of the original local minimum. Our theoretical analysis establishes formal conditions for
successful escape, and empirical results show that LEAC achieves superior optimization performance
at a fraction of the computational cost of fully over-parameterized methods. By demonstrating that
deterministic escapes are achievable, our work pioneers a new line of research aimed at escaping
local minima with first-order optimizers, and lays the groundwork for more general optimization
algorithms endowed with similar capabilities.

1 Introduction

The challenge of optimization in modern machine learning landscapes, all inherently non-convex, cannot be overstated.
The inherent difficulty arises because non-convex problems can encode NP-hard problems, such as the subset sum
problem, making them at least NP-hard in the general case [1]. Moreover, given the enormous size and complicated
structures of modern neural networks, their optimization landscapes are filled with multiple local minima, saddle points,
and possibly even flat regions. Unlike convex problems, where any local minimum is also a global minimum, the lack of
such guarantees is a major obstacle to efficient training [2]. These landscapes can deceive local optimization methods,
which might converge to a suboptimal point or fail to converge at all [3].

Traditionally, it has been assumed that local minima are inescapable black-holes for gradient-based methods, leading to
a significant body of research focused on dealing with saddle points instead. One of the most common approach is to
use randomized updates to escape saddle points with high probability, pioneered by [4]. From a dynamical system’s
standpoint, local minima are stable equilibria of the system, attracting all solution trajectories with a sufficiently small
step-size. Therefore, learning rate adjustment [5, 6, 7] emerges as a possible way to escape, while none of the existing
works could provide guaranteed escape beyond random occurences.

In this work, we aim to illuminate the potential of deterministic algorithms for conquering the non-convex landscape.
Specifically, we demonstrate that gradient methods can escape not only saddle points but also local solutions and
spurious second-order points in matrix sensing problems. Matrix sensing, which is crucial in various signal processing
and machine learning applications, involves recovering a low-rank matrix from a limited set of linear measurements.
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Escaping Local Solutions of Matrix Sensing Problems

This inherently non-convex problem often leads to local minima, where traditional first-order optimizers tend to fail [2].
The objective of matrix sensing is to recover a low-rank matrix M∗ from linear measurements of the form b = A(M∗),
where A is a linear function, with details deferred until later sections.

Previous studies have revealed a key insight in solving this non-convex challenge, which is that over-parameterization, a
technique where the model is made larger than strictly necessary, can substantially improve the optimization landscape
of the problem [8, 9, 10]. In particular, [10] introduced a tensor-based framework that lifts the original decision
variable from a matrix to higher-order tensors. This approach has the remarkable ability to transform spurious local
solutions—local solutions that are not globally optimal—into strict saddle points, which possess strict descent directions,
effectively reshaping the optimization landscape. This discovery leads us to ponder the question of whether this descent
direction also exists in the un-lifted matrix space and will it lead to a decrease in objective value? Since full tensor
lifting introduces computational overhead that increases exponentially with problem size, exploring the ability of
over-parametrized methods to escape spurious solutions without this computational burden becomes particularly crucial.

To this end, we propose a deterministic framework that combines the efficiency of matrix space optimization with the
global guarantees of tensor space optimization. The key insight of our approach is to exploit escape directions provided
by tensor lifting only when local minima are encountered. Specifically, our framework operates as follows: In the first
phase, optimization begins in the matrix space, where gradient descent is applied until convergence to a local minimum.
If a local minimum is detected, the algorithm will enter into second phase, where a deterministic descent direction is
calculated as if the local minimum was lifted into tensor spaces, which is why we call it simulated over-parametrization.
This design reduces the computational burden compared to full tensor lifting while retaining its ability to escape local
minima.

We validate our approach through numerical experiments on a benchmark problem, Perturbed Matrix Completion [9],
which is commonly used to evaluate optimization frameworks in matrix sensing. Although the experiments are relatively
simple and focus primarily on small- to medium-scale settings, they effectively demonstrate that our algorithm can
deterministically and verifiably escape local minima. This capability represents a pioneering and critical advancement
for non-convex optimization methods.

The remainder of the paper is organized as follows. Section 2 provides an overview of necessary backgrounds. Section 3
introduces an intermediary algorithm LEAC-Canonical to help readers gain more intuitive understandings, which further
leads to our main results discussed in Section 4, with LEAC-Simulated being our new algorithm. Section 5 presents
numerical experiments to demonstrate the effectiveness of our new approach.

2 Background and Related Work

Matrix sensing plays a critical role in signal processing and compressed sensing, where it facilitates the recovery of
signals or images from incomplete or corrupted matrix measurements [11, 12, 13]. The objective is to reconstruct an
unknown low-rank matrix M∗ ∈ Rn×n from a set of m linear measurements, expressed as:

A(M∗) = [⟨A1,M
∗⟩, ⟨A2,M

∗⟩, · · · ⟨Am,M∗⟩]⊤ , (1)

where A : Rn×n → Rm is a linear measurement operator defined by m symmetric sensing matrices {Ai ∈ Rn×n}mi=1,
and ⟨Ai,M

∗⟩ = Tr(A⊤
i M

∗) represents the matrix inner product. The goal is to recover M∗ from b when m ≪ n2,
under the assumption that M∗ is low-rank. Such problems arise in various applications, including collaborative filtering
[14], quantum state tomography [15], and visual tracking [16]. Furthermore, this problem is directly related to the
training of certain types of neural networks [17] and can represent general polynomial optimization problems [18]. As a
result, matrix sensing serves as an excellent benchmark for studying and understanding more complex machine learning
challenges from a theoretical perspective.

To recover M∗, the matrix sensing problem is typically formulated as the following optimization task:

min
M∈Rn×n

f(M) =
1

2
∥A(M)− b∥22,

s.t. rank(M) ≤ r, (2)

where r denotes the rank of the ground-truth matrix M∗. However, solving this rank-constrained problem is com-
putationally intractable due to the non-convex nature of the rank constraint, which makes the problem NP-hard in
general.

To overcome this challenge, the problem is often reformulated using a factorized representation, commonly referred to
as the Burer-Monteiro (BM) decomposition [19]. Specifically, the low-rank matrix M is parameterized as M = XX⊤,
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where X ∈ Rn×r. Substituting this parameterization into the objective function transforms the optimization problem
into:

min
X∈Rn×r

h(X) = f(XX⊤) =
1

2
∥A(XX⊤)− b∥22. (3)

This reformulation eliminates the explicit rank constraint but introduces additional non-convexity arising from the
bilinear structure of XX⊤.

2.1 Restricted Isometry Property (RIP)

The Restricted Isometry Property (RIP) [11] is a widely used condition in low-rank matrix recovery that ensures the
linear measurement operator A preserves the geometry of low-rank matrices. Formally, A satisfies the RIP of rank
r ≤ p with constant δp ∈ (0, 1) if, for any M ∈ Rn×n, the following inequality holds:

(1− δp)∥M∥2F ≤ ∥A(M)∥22 ≤ (1 + δp)∥M∥2F , (4)
where ∥M∥F denotes the Frobenius norm of M . Intuitively, the RIP ensures that the measurement operator A does not
significantly distort the distances between low-rank matrices, which is essential for accurate recovery.

To address the limitations of the RIP framework, we adopt an alternative formulation based on the (Ls, p)-Restricted
Strong Smoothness (RSS) and (αs, p)-Restricted Strong Convexity (RSC) properties [20]. The formal definition of
these properties is provided in Definition A.10.

These conditions separately characterize the smoothness and curvature of the measurement operator A, where Ls =
1 + δp and αs = 1− δp. This formulation offers a more flexible and expressive generalization of the RIP. Notably, the
parameters Ls and αs play a crucial role in the subsequent derivations.

2.2 Tensor Lifting for Matrix Sensing

To facilitate the understanding of tensor lifting methods for matrix sensing, we first recommend readers to review the
foundational concepts of tensor algebra provided in Appendix A.1, as these concepts are crucial for the subsequent
discussions in this work.

Tensor lifting reformulates the matrix sensing problem by embedding the matrix variable X ∈ Rn×r into a higher-
dimensional tensor space. Specifically, [10, 21] define the lifted tensor as w = vec(X)⊗l ∈ Rnr◦l, where l denotes the
lifting order. To preserve the structure of the original matrix during lifting and recovery, they introduce a permutation
tensor P ∈ Rn×r×nr that satisfies:

⟨P, vec(X)⟩3 = X, ∀X ∈ Rn×r, (5)
where ⟨·, ·⟩3 represents contraction along the third mode of P. This mapping guarantees that any vectorized matrix
vec(X) can be faithfully reconstructed from the tensor space using P. The sensing operator A is then extended to the
tensor space. The original operator A ∈ Rm×n×n, defined as Aijk = (Ai)jk for i ∈ [m] and (j, k) ∈ [n] × [n], is
lifted to A⊗l, enabling it to act on higher-dimensional tensors. Using the lifted operator and variable, the reconstructed
matrix is expressed as P(w) = ⟨P⊗l,w⟩3∗[l], where ⟨·, ·⟩3∗[l] generalizes mode-wise contractions for order-l tensors.

The optimization problem in tensor space is formulated as:

min
w∈Rnr◦l

∥∥〈A⊗l, ⟨P(w),P(w)⟩2∗[l]
〉
− b⊗l

∥∥2
F
, (6)

where ⟨P(w),P(w)⟩2∗[l] contracts modes 2, 4, . . . , 2l to retain the bilinear structure of the original matrix variable.

To simplify notation and clarify the problem structure, two auxiliary functions are defined. The reconstruction error in
the tensor space is expressed as:

f l (M) :=
∥∥〈A⊗l,M

〉
− b⊗l

∥∥2
F
, (7)

and the lifted objective function is given by:

hl(w) := f l
(
⟨w,w⟩2∗[l]

)
, (8)

where M is a candidate tensor, and ⟨w,w⟩2∗[l] denotes the contraction of w with itself. These definitions establish a
clear connection between the lifted tensor space and the original matrix space.

Tensor lifting fundamentally transforms the optimization landscape by converting spurious local minima in the
matrix space into strict saddle points in the tensor space. Gradient-based methods can leverage this favorable
geometry to escape saddle points and converge to global minima. However, the computational cost of tensor lifting
increases geometrically with the lifting order l, making it challenging for large-scale problems. Developing efficient
implementations and approximations is therefore critical for practical applications.
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2.3 Implicit Regularization in Over-parameterized Optimization

An intriguing phenomenon in over-parameterized optimization is implicit regularization, where optimization algorithms,
such as gradient descent, exhibit a natural bias toward solutions with desirable properties, even in the absence of explicit
constraints. For instance, in the Burer-Monteiro (BM) decomposition for matrix sensing, gradient descent inherently
tends to find low-rank solutions [22], effectively acting as an implicit form of regularization. Similarly, in tensor lifting,
the optimization dynamics in the tensor space bias the iterates toward tensors that are approximately rank-1 [21], which
correspond to low-rank solutions in the matrix space. This property has been exploited to analyze the convergence
behavior of gradient descent in the tensor space. In our work, this approximate rank-1 structure enables us to establish a
connection between the gradient descent trajectories in the tensor space and those in the matrix space. Consequently,
escape directions identified in the tensor space can serve as an oracle for guiding escape directions in the matrix space.

2.4 Limitations of Full Tensor Lifting and Solutions

Despite its theoretical benefits, full tensor lifting faces significant practical challenges. The computational cost grows
exponentially with the lifting order l, as the size of the lifted tensor w scales exponentially. Additionally, the increased
number of variables and constraints complicates optimization, often requiring more iterations to converge.

To address these issues, we propose the LEAC (Lift-Escape-And-Collapse) framework, which includes two variants:
LEAC-Canonical and LEAC-Simulated. LEAC-Canonical explicitly performs tensor lifting to escape spurious local
minima, while LEAC-Simulated avoids explicit tensor operations by simulating the escape dynamics directly in the ma-
trix space. LEAC-Canonical serves as an intermediary algorithm to demonstrate the philosophy of our approach, while
LEAC-Simulated is our main result. The simulation retains the benefits of over-parameterization while significantly
reducing computational overhead. Consequently, LEAC-Simulated is particularly effective for large-scale problems
where full tensor lifting is infeasible.

2.5 Algorithms that (Might) Escape Local Minima

Particle Swarm Optimization (PSO), inspired by natural predation processes, conducts stochastic searches to find
optimal solutions [23]. Stochastic Gradient Descent (SGD), on the other hand, introduces randomness by using a subset
of data to compute gradients at each step [24]. Momentum-based and adaptive SGD further augments the ability to
escape by incorporating a weighted average of past and current gradients [25, 26, 5]. However, none of these methods
can escape local minima deterministically [27], and escapes cannot be expected nor actively initiated.

2.6 Notations

Let X̂ represent a local minimum in the matrix space (3), and let ŵ denote its corresponding strict saddle point in the
tensor space. Throughout this work, we frequently refer to decompositions of X̂ and ∇f(X̂X̂⊤):

X̂ =

r∑
ϕ=1

σϕvϕq
⊤
ϕ , ∇f(X̂X̂⊤) =

n∑
θ=1

λθuθu
⊤
θ (9)

where σr, vr, and qr represent the smallest singular value and its corresponding left and right singular vectors,
respectively. Similarly, λn and un denote the smallest eigenvalue and its eigenvector.

Additionally, we use the following notations: ◦l denotes the shorthand for the l-fold Cartesian product; [l] denotes the
integer set 1, 2, . . . , l for a positive integer l.

3 Deterministic Escape with Canonical Over-Parametrization

To better facilitate the understanding of our new approach, we first present the LEAC-Canonical algorithm in this
section, which has a more intuitive structure. We now outline the theoretical foundations of this approach, followed by
a description of the algorithm derived from these results.

3.1 Theoretical Foundations of LEAC-Canonical

The LEAC-Canonical mechanism relies on two key theoretical results that establish the connection between spurious
local minima in the matrix space and strict saddle points in the tensor space. These results also provide a structured
escape direction that enables overcoming such saddle points.
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The first theorem demonstrates that under certain conditions, a spurious local minimum X̂ in the matrix space becomes
a strict saddle point in the tensor space after tensor lifting. Moreover, it identifies a rank-1 escape direction in the tensor
space, constructed using the smallest singular vector qr of X̂ and the smallest eigenvector un of ∇f(X̂X̂⊤).

Theorem 3.1 (informal, adapted from [10]). Consider a spurious local minimum X̂ ∈ Rn×r of Equation (3) with rank
r < n, where rsearch = r and X̂X̂⊤ ̸= M∗. Assume that A satisfies the RSC and RSS conditions. Then, the lifted
tensor ŵ = vec(X̂)⊗l is a strict saddle point of Equation (6) with a rank-1 symmetric escape direction vec(unq

⊤
r )

⊗l,
provided that X̂ satisfies:

−λn ≥ αs∥X̂X̂⊤ −M∗∥2F
2Tr(M∗)

≥ Lsσ
2
r

2
, (10)

if l is odd and sufficiently large. −λn denotes the smallest eigenvalue of ∇f(X̂X̂⊤), and σr is the r-th singular value
of X̂ .

The second theorem guarantees that moving along the escape direction in the tensor space always reduces the objective
value, regardless of the step size η.

Theorem 3.2 (Tensor Objective Descent Along the Escape Direction). For any step size η > 0, moving along the
escape direction vec(unq

⊤
r )

⊗l reduces the tensor space objective value in Equation (8):

hl(wescape) = hl(ŵ + η vec(unq
⊤
r )

⊗l) < hl(ŵ). (11)

These two theorems form the theoretical foundation of the LEAC-Canonical mechanism. By lifting the optimization
problem to the tensor space and updating along a structured escape direction, the mechanism ensures descent in the
tensor space objective, enabling deterministic escape from spurious local minima.

3.2 Algorithm Description of LEAC-Canonical

Based on the theoretical results outlined above, the LEAC-Canonical mechanism is implemented in Algorithm 1. The
algorithm begins by identifying a spurious local minimum X̂ in the matrix space and lifting it to the tensor space
through the tensorized vectorization operator. In the tensor space, the algorithm updates the lifted variable along the
escape direction. Finally, the updated tensor is collapsed back into the matrix space using TensorPCA [21], producing
the escape point X̌ .

Algorithm 1 LEAC with Canonical Over-Parametrization

1: Input: Local minimum X̂ , lifting order l, step size η
2: Output: Escape point X̌ ∈ Rn×r

3: Perform SVD on X̂: X̂ =
∑r

ϕ=1 σϕvϕq
⊤
ϕ

4: Compute the eigendecomposition of ∇f(X̂X̂⊤): ∇f(X̂X̂⊤) =
∑n

θ=1 λθuθu
⊤
θ

5: Lift X̂ to the tensor space: ŵ = vec(X̂)⊗l

6: Update the lifted variable in the tensor space: w̌ = ŵ + η vec(unq
⊤
r )

⊗l

7: Collapse the lifted tensor back to matrix space: X̌ = TensorPCA(w̌)

While the LEAC-Canonical mechanism is theoretically effective for escaping spurious local minima, it has notable
limitations. First, although the escape direction guarantees descent in the tensor space objective, ensuring a correspond-
ing descent in the matrix space objective is challenging, as the step size η must be carefully calibrated. Second, the
tensor update ŵ + η vec(unq

⊤
r )

⊗l often produces a tensor that is not rank-1, necessitating the use of TensorPCA to
extract the dominant rank-1 component. Finally, the lifting and collapsing processes introduce significant computational
overhead, which restricts the scalability of the method in high-dimensional settings. To overcome these challenges, the
next section introduces the LEAC-Simulated mechanism, which leverages simulated over-parameterization to bypass
explicit lifting and collapsing while retaining the benefits of over-parameterization.
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4 Deterministic Escape with Simulated Over-Parametrization

4.1 Theoretical Foundations of LEAC-Simulated

4.1.1 Correspondence Between Tensor and Matrix Trajectories

This subsection establishes the theoretical connection between optimization trajectories in the matrix space and their
counterparts in the tensor space. Specifically, we demonstrate a one-to-one correspondence between gradient descent
(GD) trajectories in the two spaces and provide guarantees that tensor-space solutions near the escape point correspond
to approximate rank-1 tensors aligned with matrix-space solutions. These results are crucial for motivating the design
of closed-form approximations for rank-1 tensor escape points (detailed in the next subsection).
Theorem 4.1 (One-to-One Correspondence Between Matrix and Tensor Trajectories). Let X0 = ϵX ∈ Rn×rsearch

represent the initialization in the matrix space, where ∥X∥2F = 1 and rsearch > r. Denote the matrix-space gradient
descent trajectory by {Xt}∞t=0, where the updates follows Xt+1 = Xt − η

1
l ∇h(Xt). Let w0 = vec(X0)

⊗l be the
corresponding initialization in the tensor space. The tensor-space gradient descent trajectory, denoted by {wt}∞t=0,
follows the updates wt+1 = wt − η∇hl(wt), with an arbitrary step size η. Then, for sufficiently small ϵ, the following
holds for all t ≥ 0:

vec(Xt)
⊗l ≈ wt, (12)

where wt is approximately rank-1. Moreover, this correspondence between {wt}∞t=0 and {Xt}∞t=0 is one-to-one.

Approximation Note: The term "approximately rank-1" is defined as being κ-rank-1 with a reasonably small κ, where
κ quantifies the ratio between the second-largest and largest "v-eigenvalues" of wt. For a more detailed definition,
please refer to Theorem A.9.

This theorem establishes a direct link between gradient descent trajectories in the matrix space and their lifted
counterparts in the tensor space. It shows that as long as the initialization ϵ is sufficiently small, the tensor-space trajectory
{wt}∞t=0 remains close to the lifted versions of the matrix-space trajectory {vec(Xt)

⊗l}∞t=0, thereby preserving the
approximate rank-1 structure of the tensors.
Corollary 4.2 (Escape Direction Correspondence Near Approximate Rank-1 Solutions). Under the same conditions as
Theorem 4.1, consider a strict saddle point ŵ in the tensor space and its escape point along the direction vec(unq

⊤
r )

⊗l:

wescape = ŵ + η vec(unq
⊤
r )

⊗l, (13)

where η > 0. Then, there exists an approximately rank-1 tensor w̌ near wescape, such that w̌ corresponds to a point
along a matrix-space gradient descent trajectory {Xt}∞t=0.

Interpretation: The escape point wescape lies near an approximate rank-1 tensor that can be mapped back to the matrix
space. This is because wescape either remains on the original matrix-tensor GD trajectory or transitions to a new one.
By Theorem 4.1, all points along GD trajectories in the tensor space have an approximate rank-1 correspondence in
the matrix space.

This corollary extends Theorem 4.1 by ensuring that any tensor-space escape point along the strict saddle’s escape
direction remains close to an approximate rank-1 tensor. This guarantees that the escape point can be effectively
associated with a matrix-space solution, motivating the design of the closed-form structure for w̌.

4.1.2 Closed-Form Structure of Rank-1 Tensor

In this subsection, we present the closed-form structure of w̌, a strict rank-1 tensor that approximates the tensor-space
escape point wescape in terms of the tensor spectral norm. This result offers a computationally efficient representation of
escape points without requiring a full transition to the tensor space, significantly reducing computational complexity
while preserving theoretical guarantees.

Theorem 4.3 (Closed-form Structure of w̌). The strict rank-1 tensor w̌ = vec(X̌)⊗l, which approximates the
tensor-space escape point wescape, is given by:

X̌ =

r−1∑
ϕ=1

σϕvϕq
⊤
ϕ + σr(

√
αun +

√
βvr)q

⊤
r . (14)

If σl
rα

l
2 → η and β

l
2 → 1, then ∥∥vec(X̌)⊗l −

[
ŵ + η vec(unq

⊤
r )

⊗l
]∥∥

S
→ 0, (15)
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where ∥ · ∥S denotes the tensor spectral norm. In other words, the strict rank-1 tensor vec(X̌)⊗l closely approximates
the tensor wescape in the spectral norm sense.

The construction of X̌ is computationally efficient, as it requires only the singular value decomposition (SVD) of
X , the eigendecomposition of ∇f(XX⊤), and the parameters α and β. The significance of this result lies in its
ability to bypass the costly procedures of the LEAC-Canonical mechanism, which involves fully lifting to the tensor
space, performing deterministic escape, and subsequently collapsing back to the matrix space via computationally
demanding procedures such as TensorPCA. In contrast, the closed-form structure of w̌ allows us to directly identify the
matrix-space point corresponding to the approximate rank-1 tensor in the tensor space.

Based on Theorem 4.3, by keeping β = 1 and tuning the parameter α, we can control the tensor-space escape step
size η to ensure deterministic escape. In the next subsection, we will define the range of valid α values that guarantee
h(X̌) < h(X̂), providing theoretical assurance for matrix-space escape and practical guidance for parameter selection.

4.1.3 Conditions for Escaping Local Minima in the Matrix Space

In this subsection, we establish sufficient conditions for escaping local minima entirely within the matrix space. This
result complements the closed-form solution presented in the previous subsection, enabling the determination of an
appropriate escape step size in the matrix space, controlled by the parameter α, without requiring full lifting to the
tensor space.
Theorem 4.4 (Sufficient Condition for Matrix-Space Escape). Assume that A satisfies the RSS condition. For a matrix
X̂ that is a first-order critical point (FOP) of h(X), the sufficient condition for h(X̌) < h(X̂) is:

α ∈
(
0,

−2λn

Lsσ2
r

− 2

)
. (16)

Here, Ls is the RSS constant. Importantly, this condition is independent of the tensor lift level l and applies directly in
the matrix space.

Intersection Note: To ensure that Equation (16) admits a valid solution for α, Equation (10) must hold strictly. This is
because, otherwise, the critical point in the tensor space would not be a strict saddle point, and the escape direction
vec(unq

⊤
r )

⊗l in the tensor space would provide no meaningful guidance for escaping from the matrix space.

Theorem 4.4 provides a sufficient condition for escaping local minima in the matrix space. When paired with the
closed-form structure of w̌ established in Theorem 4.3, this result enables direct computation of the escape step size in
the matrix space by identifying an appropriate range for α.

By effectively bridging the matrix and tensor spaces while avoiding the need for explicit lifting to the tensor space,
Theorem 4.4 consolidates the computational efficiency of the LEAC mechanism. This approach allows the exploitation
of the benefits of tensor-space lifting without incurring the full computational cost associated with such operations.

Algorithm 2 LEAC with Simulated Over-Parametrization

1: Input: Local minimum X̂ , lifting order l, step size η, Restricted Strong Smoothness constant Ls

2: Output: Escape point X̌ ∈ Rn×r

3: Perform SVD on X̂: X̂ =
∑r

ϕ=1 σϕvϕq
⊤
ϕ

4: Compute the eigendecomposition of ∇f(X̂X̂⊤): ∇f(X̂X̂⊤) =
∑n

θ=1 λθuθu
⊤
θ

5: Compute upper bound for α: Υ = −2λn

Lsσ2
r
− 2

6: while True do
7: Assign β = 1 and Sample α from (0,Υ)
8: Compute rank-1 approximation X̌ using Equation 14
9: if h(X̌) < h(X̂) then

10: break
11: end if
12: end while

4.2 Algorithm Description of LEAC-Simulated

The LEAC-Simulated mechanism leverages simulated over-parameterization to efficiently escape spurious local minima
in the matrix space.
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The algorithm starts at a spurious local minimum X̂ in the matrix space and identifies an escape direction (analogous to
"oracle") that derived from the tensor space. Then, based on the closed-form structure of approximate rank-1 tensors
established in Theorem 4.3, LEAC-Simulated constructs an escape point X̌ entirely within the matrix space. By
iteratively refining the parameters α and β based on Theorem 4.4, the algorithm ensures that the matrix-space escape
point X̌ satisfies the descent condition h(X̌) < h(X̂). The complete procedure is summarized in Algorithm 2.

Unlike the LEAC-Canonical mechanism, which requires explicit lifting to the tensor space and subsequent collapsing
back to the matrix space, LEAC-Simulated avoids these computationally intensive procedures by directly exploiting the
theoretical correspondence between tensor-space and matrix-space trajectories. This approach preserves the benefits of
over-parameterization while significantly reducing computational complexity, making it scalable to high-dimensional
settings.

5 Numerical Experiments

In this section, we evaluate the proposed LEAC-Simulated mechanism on the Perturbed Matrix Completion [9]
problem, which is known to contain an exponential number of spurious solutions. The experiments aim to validate the
effectiveness of LEAC-Simulated in escaping spurious local minima and its efficiency by comparing the number of
optimization iterations required until convergence.

5.1 Perturbed Matrix Completion Setup

The perturbed matrix completion problem involves recovering a ground-truth low-rank matrix M∗ ∈ Rn×n with
rank(M∗) = r, given noisy observations generated by a perturbed linear operator Aρ. The operator Aρ is defined as:

Aρ(Mij) =

{
Mij , if (i, j) ∈ Ω,

ρMij , otherwise,
(17)

where Ω is the measurement set, specified as:

Ω = {(i, i), (i, 2k), (2k, i) | ∀i ∈ [n], k ∈ [⌊n/2⌋]}, (18)

and ρ is a small perturbation factor (set to ρ = 0.01). The task is to recover M∗ from these noisy observations while
avoiding spurious local minima, which are known to exist in this problem class due to the incomplete and perturbed
nature of the measurements.

Following the experimental protocol in [21], we set the lifted level l = 3 and initialize the optimization with X0 = ϵX ,
where X is sampled from a standard Gaussian distribution and ϵ = 10−7. Each experiment is repeated over 64
independent trials to ensure statistical robustness, and performance is averaged across these trials.

5.2 Baseline Algorithms

To assess the performance of LEAC-Simulated, we compare it against the following baseline solvers:

• Unlift Solver: This method performs standard gradient descent entirely within the matrix space without
any form of over-parameterization. It serves as a baseline to assess the advantages of leveraging over-
parameterization.

• Lift Solver: This method conducts gradient descent fully in the tensor space, explicitly lifting and optimizing
in the over-parameterized space. It represents the canonical tensor-based optimization approach and serves as
a computationally intensive baseline.

Our solver, referred to as the Semilift Solver, adopts a hybrid approach that combines matrix and tensor space opti-
mization. Specifically, LEAC-Simulated primarily operates in the matrix space using simulated over-parameterization.
However, in cases where the strict saddle condition (Equation (10)) is not satisfied, the algorithm explicitly lifts to the
tensor space and applies gradient descent directly in the tensor space. This ensures that LEAC-Simulated maintains its
theoretical guarantees even in challenging scenarios.

5.3 Key Observations and Results

Figure 1 illustrates the gradient norm and loss curves for the Unlift Solver, Lift Solver, and Semilift Solver. As shown,
both the Unlift Solver and Semilift Solver experience little to no loss reduction during the first 50–100 epochs. This
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Figure 1: Gradient norm (left) and loss curves (right) for Unlift Solver, Lift Solver, and Semilift Solver (ours) over
1400 epochs.

suggests that both solvers encounter a spurious local minimum X̂ in the matrix space, while the Lift Solver hits the
corresponding strict saddle ŵ in the tensor space.

After this initial stagnation, the Semilift Solver successfully escapes the spurious local minimum X̂ by leveraging the
LEAC-Simulated mechanism, jumping directly to X̌ . This escape is immediately reflected in the loss curve, where
the loss starts to decrease rapidly, and in the gradient norm curve, which exhibits a sharp rise followed by a steep
drop. In contrast, the Unlift Solver, lacking the guidance provided by over-parameterization, fails to escape the local
minimum despite a temporary rise and fall in the gradient norm. The loss curve for the Unlift Solver remains relatively
flat, indicating that the algorithm is trapped near the spurious local minimum.

The Lift Solver, operating entirely in the tensor space, also successfully escapes the strict saddle and eventually achieves
a loss reduction comparable to the Semilift Solver. However, this comes at the cost of significantly more iterations.
As indicated by Theorem 4.1, tensor-space gradient descent updates with step size η are approximately equivalent
to matrix-space updates with step size η

1
l . This smaller effective step size in the matrix space results in a slower

convergence rate for the Lift Solver, requiring many more iterations to escape the local minimum.

By contrast, the Semilift Solver avoids this inefficiency by directly jumping from X̂ to X̌ in a single step, leveraging the
closed-form structure of approximate rank-1 tensors provided by the LEAC-Simulated mechanism. This significantly
reduces the number of iterations required for escape while maintaining theoretical guarantees.

Remark: The loss curves also reveal that the initialization point is already near a spurious local minimum, making
the Lift Solver’s behavior analogous to applying the LEAC-Canonical mechanism (lifting to the tensor space near
the starting point to escape). Comparing the Lift Solver and Semilift Solver thus provides an indirect comparison
between the LEAC-Canonical and LEAC-Simulated mechanisms. The results highlight the computational efficiency of
LEAC-Simulated, as it achieves similar escape performance with substantially fewer iterations.

Solver (n = 11) Unlift Semilift (ours) Lift
Success Rate ↑ 0.05 0.84 0.82

Convergence Epoch ↓ 1364 512 1313
Table 1: Comparison of Success Rate and Convergence Epoch for n = 11 (n is the size of M∗).

We further quantify the performance of the three solvers by comparing their success rates and convergence speeds, as
summarized in Table 1. Here, the Success Rate is defined as the proportion of 64 trials where the final solution satisfies
∥XTX

⊤
T −M∗∥F < 0.05, and the Convergence Epoch (T ) is the number of epochs required to reach this solution.

The reason we use success rate instead of average reconstruction error is that failed trails will have very large errors,
skewing the statistics by a large margin, distracting people from the true message.

The results in Table 1 further demonstrate the advantages of the LEAC-Simulated mechanism. Specifically, the Semilift
Solver achieves a success rate of 0.84, outperforming the Unlift Solver significantly (0.05) and slightly surpassing the
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Lift Solver (0.82). This highlights the robustness of LEAC-Simulated in escaping spurious local minima and converging
to the correct solution.

Moreover, the Semilift Solver requires only 512 epochs on average to reach the solution, which is a substantial
improvement over the Lift Solver (1313 epochs) and the Unlift Solver (1364 epochs). This result aligns with our earlier
observations in Figure 1, where the Semilift Solver leverages the efficiency of simulated over-parameterization to escape
local minima in a single step and converges significantly faster than its counterparts.

6 Conclusion

In this work, we introduced LEAC (Lift, Escape, Approximate, and Collapse), a deterministic framework for escaping
spurious local minima in non-convex matrix sensing. By leveraging simulated over-parameterization, LEAC has the
ability to actively calculate a direction of guaranteed descent when trapped in local minima. This work can serve as an
initial step to construct general first-order optimizers with the ability of deterministic escape for more complex machine
learning models.
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A Preliminary Knowledge

A.1 Tensor Algebra Basics

Definition A.1 (Tensor). As a generalization of how vectors parametrize finite-dimensional vector spaces, tensors
are parametrized using arrays generated from the product of finite-dimensional vector spaces, as described in [28].
Specifically, an l-way array is defined as:

s = {si1i2...il | 1 ≤ ik ≤ nk, 1 ≤ k ≤ l} ∈ Rn1×···×nl . (19)

In this paper, tensors and arrays are considered synonymous, as there exists an isomorphism between them. Furthermore,
if n1 = · · · = nl, we refer to the tensor (or array) as an l-order (way), n-dimensional tensor. For ease of representation,
we use the notation Rn◦l, where n ◦ l := n× · · · × n (repeated l times). Throughout this work, tensors are denoted by
bold variables, while matrices, vectors, and scalars are represented in other fonts unless stated otherwise.
Definition A.2 (Symmetric Tensor). Analogous to the definition of symmetric matrices, an order-l tensor s with equal
dimensions (i.e., n1 = · · · = nl, also called a cubic tensor) is said to be symmetric if its entries remain invariant under
any permutation of their indices:

siσ(1)···iσ(l)
= si1···il ∀σ, i1, . . . , il ∈ {1, . . . , n}, (20)

where σ ∈ Gl represents a specific permutation, and Gl is the symmetric group of permutations on {1, . . . , l}. The set
of symmetric tensors is denoted as Sl(Rn).

Definition A.3 (Rank of Tensors). The rank of a cubic tensor s ∈ Rn◦l is defined as:

rank(s) = min{r | s =
r∑

i=1

ai ⊗ bi ⊗ · · · ⊗ ci}, (21)

for some vectors ai, bi, . . . , ci ∈ Rn. Furthermore, as noted in [29], if s is a symmetric tensor, it can be decomposed as:

s =

r∑
i=1

λiai ⊗ · · · ⊗ ai :=

r∑
i=1

λia
⊗l
i , (22)

where the rank is defined as the number of nonzero λi’s, analogous to the rank of symmetric matrices. A key concept in
this work is that of rank-1 tensors. For any tensor s, a necessary and sufficient condition for it to be rank-1 is:

s = a⊗l, (23)

for some a ∈ Rn.
Definition A.4 (Tensor Multiplication). The outer product of two tensors, denoted as ⊗, is an operation that combines
a pair of tensors to produce a higher-order tensor. Specifically, the outer product of two tensors s and t, of orders p and
q respectively, results in a tensor of order p+ q, denoted as o = s⊗ t, such that:

oi1···ipj1...jq = si1···iptj1···jq . (24)

When the two tensors have the same dimension, the outer product is defined as ⊗ : Rn◦p × Rn◦q → Rn◦(p+q). For
simplicity, we use the following shorthand notation:

a⊗ · · · ⊗ a︸ ︷︷ ︸
l times

:= a⊗l. (25)

We also define the inner product between two tensors. The mode-l inner product between two tensors, assuming they
share the same l-th dimension, is denoted as ⟨s, t⟩l. Without loss of generality, assuming l = 1, the mode-l inner
product is defined as:

[⟨s, t⟩l]i2···ipj2···jq =

nl∑
ι=1

sιi2···iptιj2···jq . (26)

Note that in ⟨·, ·⟩l, the summation is performed over the l-th dimension of the first tensor, where the total number of
elements is nl. This definition can be naturally extended to multi-mode inner products by summing over multiple
modes, written as ⟨a,b⟩l1,··· ,lm . We also refer to the tensor inner product as contraction, which involves contracting
over m modes l1, · · · , lm.
Lemma A.5 (Tensor Outer Product Identity). For four arbitrary matrices P,Q,U, V of compatible dimensions, the
following identity holds:

⟨P ⊗Q,U ⊗ V ⟩2,4 = PU ⊗QV (27)
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Proof. See Section 10.2 of [30] for details. Note that this result corresponds to the tensor outer product version, where
the tensor outer product is equivalent to the unreshaped version of the Kronecker product.

Definition A.6 (Tensor Norm). We adopt a definition similar to that in [31]. For a cubic tensor s ∈ Rn◦l, the spectral
norm ∥ · ∥S and the nuclear norm ∥ · ∥∗ are defined as follows:

∥s∥∗ = inf


rm∑
j=1

|λj | : s =
rm∑
j=1

λjs
⊗l
j , ∥sj∥2 = 1, sj ∈ Rn

 , (28)

∥s∥S = sup
{
|⟨s, a⊗l⟩| : ∥a∥2 = 1, a ∈ Rn

}
. (29)

Lemma A.7 (Dual Relationship Between Tensor Norms). The spectral norm ∥ · ∥S is the dual norm of the nuclear
norm ∥ · ∥∗, meaning that for any tensor s, the following holds:

∥s∥S = sup
∥t∥∗≤1

|⟨s, t⟩|, (30)

where t is a tensor of the same dimensions as s.

Proof. See Lemma 21 in [32].

Definition A.8 (Variational Eigenvalue of Tensor). There are various ways to define eigenvalues of a tensor [33]. In this
work, we adopt the same definition as in [21]. For a given tensor s ∈ Rn◦l, the kth variational eigenvalue (v-Eigenvalue),
denoted as λv

k(s), is defined as:

λv
k(s) := max

S
dim(S)=k

min
t∈S

|⟨s, t⟩|
∥t∥2F

, k ∈ [n], (31)

where S is a subspace of Rn◦l spanned by a set of orthogonal, symmetric, rank-1 tensors. The dimension of S
corresponds to the number of orthogonal tensors that span this space. It follows directly from the definition that the
spectral norm of s satisfies ∥s∥S = λv

1(s).

Theorem A.9 (wt Tends to Rank-1, Adapted from [21]). Consider the optimization problem (6) and its gradient
descent (GD) trajectory over a finite horizon T , denoted as {wt}Tt=0, with the update rule:

wt+1 = wt − η∇hl(wt), (32)

where η is the stepsize. Then, there exist t(κ, l) ≥ 1 and κ < 1 such that:

λv
2(wt)

λv
1(wt)

≤ κ, ∀t ∈ [t(κ, l), tT ], (33)

provided that the initialization w0 is w0 = ϵx⊗l
0 with a sufficiently small ϵ. Here, t(κ, l) is given by:

t(κ, l) =

⌈
ln

(
∥x0∥l2

κ|v⊤1 x0|l

)
ln

(
1 + ησl

1(U)

1 + ησl
2(U)

)−1
⌉

(34)

As long as

t ≍ ln(1/κ) · ln
(
1 + ησl

1(U)

1 + ησl
2(U)

)−1

, (35)

the tensor wt will be κ-rank-1, provided ϵ is selected as a function of U , r, n, Ls, and κ. Here, U = ⟨A∗
rA,M∗⟩, and

≍ denotes "asymptotic to," meaning that the two terms on both sides of this symbol have the same order of magnitude.

We say a tensor w is κ-rank-1 if:
λv
2(w)/λv

1(w) ≤ κ. (36)

Proof. See Theorem 1 in [21].
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A.2 Matrix Sensing Basics

A.2.1 Restricted Strong Smoothness and Restricted Strong Convexity

Definition A.10 (Restricted Strong Smoothness (RSS) and Restricted Strong Convexity (RSC)). The Restricted Strong
Smoothness (RSS) and Restricted Strong Convexity (RSC) properties [20] characterize the smoothness and curvature
of a measurement operator A, thereby providing a more flexible and expressive alternative to the Restricted Isometry
Property (RIP) [11].

Specifically, a linear operator A satisfies the (Ls, p)-RSS and (αs, p)-RSC properties if, for all M,N ∈ Rn×n with
rank(M), rank(N) ≤ p, the following inequality holds:

⟨M −N,∇f(N)⟩+ αs

2
∥M −N∥2F ≤ f(M)− f(N) ≤ ⟨M −N,∇f(N)⟩+ Ls

2
∥M −N∥2F , (37)

where ∇f(N) denotes the gradient of f at N , and f is the objective function defined in Equation (3).

Furthermore, the RIP constant δp can be expressed in terms of Ls and αs as:

δp =
Ls − αs

Ls + αs
. (38)

This relationship reveals that the RSS and RSC properties generalize the RIP by decoupling the symmetric bounds of
RIP into separate components, enabling a more granular analysis of the measurement operator’s behavior.

A.2.2 First-Order and Second-Order Derivatives of the Matrix Space Objective Function

Lemma A.11 (Gradient and Hessian of the Matrix Objective Function). Let f be the matrix space objective function for
the matrix sensing problem, as defined in Equation (3), where X ∈ Rn×rsearch . The gradient and Hessian of f(XX⊤)
are given as follows:

Gradient:

∇f(XX⊤) =

m∑
i=1

⟨Ai, XX⊤ −M∗⟩Ai, (39)

where ∇f(XX⊤) is a symmetric matrix because Ai are symmetric matrices.

Hessian:

∇2f(XX⊤)(XU⊤ + UX⊤, XU⊤ + UX⊤) =

m∑
i=1

⟨Ai, UX⊤ +XU⊤⟩2. (40)

Here, Ai ∈ Rn×n are the sensing matrices, M∗ ∈ Rn×n is the ground truth matrix, and U ∈ Rn×rsearch is an arbitrary
matrix.

Proof. The proof follows directly from standard multivariate calculus and properties of matrix optimization. For
detailed derivations, refer to [34, 35, 36].

A.2.3 First-Order and Second-Order Derivatives of the Tensor Space Objective Function

Lemma A.12 (Gradient and Hessian of the Tensor Objective Function). Let f l and hl denote the tensor space objective
functions for the matrix sensing problem, as defined in Equation (7) and Equation (8), where w ∈ Rnr◦l. The gradient
and Hessian of hl(w) are given as follows:

Gradient:

∇f l(M) =
〈〈
A⊗l,M−M

(
vec(Z)⊗l

)〉
,A⊗l

〉
1,4,··· ,3l−2

, (41)

∇hl(X) = 2
〈
∇f l

(
⟨X,X⟩2∗[l]

)
,X
〉
2∗[l]

, (42)

∇whl(P(w)) =
〈
∇hl(X),P⊗l

〉
1,2,4,5,··· ,3l−1,3l

, (43)

where M ∈ Rn◦2l and X ∈ R[n×r]◦l. ZZ⊤ = M∗ is the ground truth matrix in the matrix sensing problem. The map
M : Rnr◦l → Rn◦2l is defined as:

M(w) = ⟨P(w),P(w)⟩2∗[l] , (44)
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and its total derivative at w is the linear map DwM : Rnr◦l → Rn◦2l given by:

DwM(v) = ⟨P(v),P(w)⟩2∗[l] + ⟨P(w),P(v)⟩2∗[l] . (45)

Hessian: [
∇2

whl (P(w))
]
(v,v) = 2

〈
∇f l(M(w)),M(v)

〉
+
∥∥〈A⊗l,DwM(v)

〉∥∥2
F
. (46)

Here, A⊗l represents a tensor formed by the tensor outer product of A ∈ Rm×n×n with itself l times, where A consists
of m sensing matrices.

Proof. The proof follows from the results in [10], specifically Lemma 5.2 Detailed derivations can be found therein.

B Proofs of Main Theorems

B.1 Proof of Theorem 3.2

Proof. If the step size η is sufficiently small, we can use the Taylor expansion of Equation (11) around ŵ:

hl(ŵ + η vec(unq
⊤
r )

⊗l) ≈ hl(ŵ) + η⟨∇hl(ŵ), vec(unq
⊤
r )

⊗l⟩+ η2

2

[
∇2hl(ŵ)

] (
vec(unq

⊤
r )

⊗l, vec(unq
⊤
r )

⊗l
)

:= hl(ŵ) + ηc1 +
η2

2
c2 (47)

where c1 and c2 are the linear and quadratic terms, respectively.

According to Theorem 5.3 in [10], if X̂ is a first-order critical point of Equation (3), and ŵ = vec(X̂)⊗l, then:

∇hl(ŵ) = 0. (48)

This implies that c1 = 0.

Furthermore, by the proof of Theorem 3.1, which corresponds to Theorem 5.4 in [10], the quadratic term c2 is always
negative. Substituting these results into the Taylor expansion, we have:

hl(ŵ + η vec(unq
⊤
r )

⊗l) ≈ hl(ŵ) +
η2

2
c2, (49)

where η2

2 c2 < 0 for any η > 0.

Therefore, it is evident that:
hl(ŵ + η vec(unq

⊤
r )

⊗l) < hl(ŵ), (50)

which completes the proof.

B.2 Proof of Theorem 4.1

Before presenting the proof of Theorem 4.1, we establish two key lemmas in the following subsubsections. These
lemmas lay the foundation for the main result. The proof of the theorem itself is provided in the third subsubsection.

B.2.1 Matrix Space Trajectory Decomposition and Approximation

The first lemma concerns the decomposition and approximation of the trajectory in the matrix space under gradient
descent (GD).

Lemma B.1. If the initialization is given by X0 = ϵX ∈ Rn×rsearch with |X|2F = 1, then the trajectory of Xt can be
approximated as:

Xt ≈ X̃t =

(
I + η

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0 (51)
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Proof. We begin by analyzing the first step of the gradient descent (GD) update:

X1 = X0 − η∇h (X0) = X0 − η

(
m∑
i=1

〈
Ai, X0X

⊤
0 −M∗〉Ai

)
X0

=

(
I + η

m∑
i=1

⟨Ai,M
∗⟩Ai

)
X0 − η

(
m∑
i=1

〈
Ai, X0X

⊤
0

〉
Ai

)
X0. (52)

The first term in Equation (52) captures the leading-order update due to the initialization, while the second term is of
higher order in ϵ. Specifically, since X0 = ϵX , we can expand the second term as:

−η

(
m∑
i=1

〈
Ai, X0X

⊤
0

〉
Ai

)
X0 = O(ϵ3). (53)

Thus, the update simplifies to:

X1 =

(
I + η

m∑
i=1

⟨Ai,M
∗⟩Ai

)
X0 +O(ϵ3). (54)

By induction, this result can be generalized to t steps under the assumption that ϵ → 0, such that the higher-order terms
O(ϵ3) vanish. Consequently, the trajectory of Xt can be approximated as shown in Equation (51).

This completes the proof of the lemma.

B.2.2 Tensor Space Trajectory Decomposition and Approximation

The second lemma addresses both the decomposition and approximation of the trajectory in the tensor space under
gradient descent (GD).

Lemma B.2. For any point wt on the GD trajectory, the following decomposition holds:

wt = ⟨zt,w0⟩ −Et = w̃t −Et, (55)

where:

zt =
(
J + η

〈〈
A⊗l

r ,A⊗l
〉
,M∗⊗l

〉)t
∈ R[nr×nr]◦l, (56)

Et =

t∑
i=1

〈(
J + η

〈〈
A⊗l

r ,A⊗l
〉
,M∗⊗l

〉)t−i

, Êi

〉
, (57)

Êi = η
〈〈〈

A⊗l
r ,A⊗l

〉
, ⟨P (wi−1) ,P (wi−1)⟩2∗[l]

〉
,wi−1

〉
2∗[l]

∈ Rnr◦l. (58)

Here, Ar = Ir ⊘1,2 A ∈ Rrm×rn×n represents the Kronecker product applied only to the first and second dimensions
of A, making

〈
A⊗l

r ,A⊗l
〉
∈ R[rn×rn×n×n]◦l. Additionally, J ∈ R[rn×rn]◦l denotes the identity operator.

Furthermore, if w0 = ϵw ∈ Rnr◦l, then ∥Et∥S = O(ϵ3). Under the assumption that ϵ is sufficiently small, this implies:

wt ≈ ⟨zt,w0⟩ . (59)

Proof. The proof follows the same steps as the proofs of Lemmas 12 and 13 in [21]. For brevity, the details are omitted
here.

B.2.3 Approximation Relationship Between Matrix Space and Tensor Space Trajectories

In this subsection, we present the detailed proof of Theorem 4.1. In the process, we utilize the delta function δij , which
takes the value 1 if i = j and 0 otherwise.
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Proof. First, we write the value of each component of a point on the approximate tensor gradient descent (GD)
trajectory:

w̃tj1p1···jlpl
=

n,··· ,n∑
k1=1,··· ,kl=1

r,··· ,r∑
q1=1,··· ,ql=1

(
J + η

〈〈
A⊗l

r ,A⊗l
〉
,M∗⊗l

〉)t
j1p1k1q1···jlplklql

w0k1q1···klql

=

n,··· ,n∑
k1=1,··· ,kl=1

r,··· ,r∑
q1=1,··· ,ql=1

(
Jj1p1k1q1···jlplklql + η

〈〈
A⊗l

r ,A⊗l
〉
,M∗⊗l

〉
j1p1k1q1···jlplklql

)t

w0k1q1···klql

=

n,··· ,n∑
k1=1,··· ,kl=1

r,··· ,r∑
q1=1,··· ,ql=1

(
Jj1p1k1q1···jlplklql + η

〈
A⊗l

r ,A⊗l
〉
p1q1···plql

M∗⊗l
j1k1···jlkl

)t
w0k1q1···klql . (60)

Next, the term
〈
A⊗l

r ,A⊗l
〉
p1q1···plql

M∗⊗l
j1k1···jlkl

can be expressed as:〈
A⊗l

r ,A⊗l
〉
p1q1···plql

M∗⊗l
j1k1···jlkl

=

m,··· ,m∑
i1=1,··· ,il=1

n,··· ,n∑
j1=1,··· ,jl=1

n,··· ,n∑
k1=1,··· ,kl=1

Arp1i1,q1j1,k1
· · ·Arplil,qljl,kl

Ai1j1k1
· · ·Ailjlkl

M∗
j1k1

· · ·M∗
jlkl

=

m,··· ,m∑
i1=1,··· ,il=1

n,··· ,n∑
j1=1,··· ,jl=1

n,··· ,n∑
k1=1,··· ,kl=1

Irp1q1Ai1j1k1
Ai1j1k1

M∗
j1k1

· · · IrplqlAiljlkl
Ailjlkl

M∗
jlkl

=

m,··· ,m∑
i1=1,··· ,il=1

Irp1q1 ⟨Ai1,:,:,M
∗⟩Ai1j1k1 · · · Irplql ⟨Ail,:,:,M

∗⟩Ailjlkl

=δp1q1 · · · δplql

m,··· ,m∑
i1=1,··· ,il=1

⟨Ai1,:,:,M
∗⟩Ai1j1k1

· · · ⟨Ail,:,:,M
∗⟩Ailjlkl

=δp1q1 · · · δplql

m∑
i1=1

· · ·
m∑

il=1

[⟨Ai1,:,:,M
∗⟩Ai1,:,:]j1k1

· · · [⟨Ail,:,:,M
∗⟩Ail,:,:]jlkl

=δp1q1 · · · δplql

[
m∑

i1=1

⟨Ai1 ,M
∗⟩Ai1

]
j1k1

· · ·

[
m∑

il=1

⟨Ail ,M
∗⟩Ail

]
jlkl

. (61)

Substituting Equation (61) into Equation (60), we obtain:

w̃tj1p1···jlpl
=

n,··· ,n∑
k1=1,··· ,kl=1

r,··· ,r∑
q1=1,··· ,ql=1

(δj1k1δp1q1 · · · δj1k1δplql+

ηδp1q1 · · · δplql

[
m∑

i1=1

⟨Ai1 ,M
∗⟩Ai1

]
j1k1

· · ·

[
m∑

il=1

⟨Ail ,M
∗⟩Ail

]
jlkl

)t ·w0k1q1···klql (62)

In Equation (62), each term in
∑n,··· ,n

k1=1,··· ,kl=1

∑r,··· ,r
q1=1,··· ,ql=1 can be derived as:δj1k1

δp1q1 · · · δj1k1
δplql + ηδp1q1 · · · δplql

[
m∑

i1=1

⟨Ai1 ,M
∗⟩Ai1

]
j1k1

· · ·

[
m∑

il=1

⟨Ail ,M
∗⟩Ail

]
jlkl

t

w0k1q1···klql

= δp1q1 · · · δplql

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t
⊗l

j1k1···jlkl

w0k1q1···klql

= δp1q1 · · · δplql

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t
⊗l

j1k1···jlkl

X0k1q1 · · ·X0klql

= δp1q1 · · · δplql

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

j1k1

X0k1q1 · · ·

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

jlkl

X0klql (63)
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Under the operation of
∑n,··· ,n

k1=1,··· ,kl=1, we obtained l-fold matrix multiplications. The resulting expression can be
further derived under the operation of

∑r,··· ,r
q1=1,··· ,ql=1:

r,··· ,r∑
q1=1,··· ,ql=1

δp1q1 · · · δplql

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0


j1q1

· · ·

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0


jlql

=

r∑
q1=1

δp1q1

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0


j1q1

· · ·
r∑

ql=1

δplql

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0


jlql

=

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0


j1p1

· · ·

(I + η
1
l

m∑
i=1

⟨Ai,M
∗⟩Ai

)t

X0


jlpl

= X̃tj1p1
· · · X̃tjlpl

= vec(X̃t)
⊗l
j1p1,··· ,jlpl

(64)

This demonstrates that, when approximating the gradient descent (GD) trajectory at any time step t, the trajectory in the
tensor space has a component w̃t that corresponds one-to-one with the component X̃t of the trajectory in the matrix
space. The key difference is that the effective step size in the tensor space is η, while in the matrix space, it is scaled by
η

1
l .

This completes the proof.

B.3 Proof of Theorem 4.3

This subsection is dedicated to proving one of the most significant theorems in our work: Theorem 4.3. The proof is
structured as follows. In the first subsubsection, we introduce an important lemma that serves as the foundation for the
proof. Building on this lemma, we propose a novel and intuitive approach, which we term the "dumpling" method, to
complete the proof. Specifically, in the second and third subsubsections, we demonstrate that w̌ and ŵ+η vec(unq

⊤
r )

⊗l

can each be approximated in the directions of vec(unq
⊤
r )

⊗l and vec(vrq
⊤
r )

⊗l, respectively. This step is akin to aligning
the two sides of a dumpling wrapper before sealing it. Finally, in the fourth subsubsection, we establish that these two
components can be approximated within the unit tensor subspace spanned by vec(unq

⊤
r )

⊗l and vec(vrq
⊤
r )

⊗l. This step
completes the proof by showing that the approximation aligns with the tensor spectral norm, akin to neatly sealing the
remaining edges of the dumpling wrapper to ensure a perfect fit.

B.3.1 Orthogonality Between Singular Vector vr and Eigenvector un

Lemma B.3. If X̂ is a first-order critical point of Equation (3) and the smallest eigenvalue of ∇f(X̂X̂⊤) is negative,
then the left singular vector vr of X̂ corresponding to its smallest singular value is orthogonal to the eigenvector un of
∇f(X̂X̂⊤) corresponding to its smallest eigenvalue.

Proof. We first factorize the point X̂ and the gradient ∇f(X̂X̂⊤) using singular value decomposition (SVD) and
eigenvalue decomposition (EVD), respectively:

X̂ =

r∑
ϕ=1

σϕvϕq
⊤
ϕ (65)

∇f(X̂X̂⊤) =

n∑
θ=1

λθuθu
⊤
θ (66)

where σϕ are the singular values of X̂ , vϕ and qϕ are the left and right singular vectors, λθ are the eigenvalues of
∇f(X̂X̂⊤), and uθ are the corresponding eigenvectors.

Since X̂ is a first-order critical point of f(X̂X̂⊤) and ∇f(X̂X̂⊤) is a symmetric matrix, it satisfies:

∇f(X̂X̂⊤)vr = ∇f(X̂X̂⊤)⊤vr =

(
n∑

θ=1

λθuθu
⊤
θ

)
vr = 0, (67)

where vr is the left singular vector of X̂ corresponding to its smallest singular value σr.
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Next, we expand vr in terms of the eigenvector basis uθ of ∇f(X̂X̂⊤):

vr =

n∑
θ=1

cθuθ, where cθ = u⊤
θ vr. (68)

Substituting this expansion into ∇f(X̂X̂⊤)vr = 0, we get:

∇f(X̂X̂⊤)vr =

n∑
θ=1

λθcθuθ = 0. (69)

Since the eigenvectors uθ are linearly independent, the coefficients must satisfy:

λθcθ = 0, ∀θ. (70)

This implies:

cθ = 0 for all θ such that λθ ̸= 0. (71)

Thus, vr must lie entirely in the eigenspace corresponding to the zero eigenvalue of ∇f(X̂X̂⊤). Let the set of
eigenvectors corresponding to the zero eigenvalue be uθ0 . Then:

vr ∈ span ({uθ0}) . (72)

Since λn < 0, the eigenvector un corresponds to a strictly negative eigenvalue. Therefore, un cannot belong to the null
space of ∇f(X̂X̂⊤).

Because eigenvectors corresponding to distinct eigenvalues of a symmetric matrix are orthogonal, the eigenspace of the
zero eigenvalue is orthogonal to the eigenspace of the negative eigenvalue λn. Hence:

u⊤
n vr = 0. (73)

This completes the proof.

Corollary B.4 (Orthogonality Between Tensor Space Projection Directions). Based on the above lemma, we immediately
obtain the following result:

vec(unq
⊤
r )

⊗l ⊥ vec(vrq
⊤
r )

⊗l (74)

Proof. The proof is omitted for brevity.

B.3.2 Approximation Relationship in the Projection Direction of vec(unq
⊤
r )

⊗l

Lemma B.5. The condition

σl
rα

l
2 → η (75)

is necessary and sufficient for w̌ to approximate ŵ + η vec(unq
⊤
r )

⊗l in the projection direction of vec(unq
⊤
r )

⊗l.

Proof. To establish this result, we consider the explicit form of the approximation condition:〈
w̌⊗l, vec(unq

⊤
r )

⊗l
〉
→
〈
ŵ + η vec(unq

⊤
r )

⊗l, vec(unq
⊤
r )

⊗l
〉

⇔

〈r−1∑
ϕ=1

σϕvϕq
⊤
ϕ + σr(

√
αun +

√
βvr)q

⊤
r

⊗l

, (unq
⊤
r )

⊗l

〉
→
〈
X̂⊗l + η(unq

T
r )

⊗l, (unq
T
r )

⊗l
〉

(76)
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To verify that Equation (76) holds, we expand the inner product term into its component elements:

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

r−1∑
ϕ=1

σϕvϕq
⊤
ϕ + σr(

√
αun +

√
βvr)q

⊤
r

⊗l

j1p1···jlpl

(unq
⊤
r )

⊗l
j1p1···jlpl

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

[
X̂⊗l + η(unq

⊤
r )

⊗l
]
j1p1···jlpl

(unq
⊤
r )

⊗l
j1p1···jlpl

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι
+ σr(

√
αun,jι +

√
βvr,jι)qr,pι

 l∏
ι=1

un,jιqr,pι

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

 l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι
+ σrvr,jιqr,pι

+ η

l∏
ι=1

un,jιqr,pι

 l∏
ι=1

un,jιqr,pι

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι
+ σr(

√
αun,jι +

√
βvr,jι)qr,pι

un,jιqr,pι

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι
+ σrvr,jιqr,pι

un,jιqr,pι
+ η

l∏
ι=1

un,jιqr,pι
un,jιqr,pι

(77)

Using the orthogonality of the singular vectors qr ⊥ qϕ (where ϕ = 1, · · · , r − 1), derived from the Singular Value
Decomposition (SVD), all terms involving qϕ,pι

qr,pι
vanish under the summation

∑r,··· ,r
p1=1,··· ,pl=1. Consequently, we

have:

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σr(
√
αun,jι +

√
βvr,jι)qr,pι

un,jιqr,pι

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

(
l∏

ι=1

σrvr,jιqr,pι
un,jιqr,pι

+ η

l∏
ι=1

un,jιqr,pι
un,jιqr,pι

)
(78)

Furthermore, using the orthogonality vr ⊥ un (by Lemma B.3), all terms involving vr,jιun,jι vanish under the
summation

∑n,··· ,n
j1=1,··· ,jl=1. This reduces the expression to:

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σr

√
αun,jιqr,pι

un,jιqr,pι
→

n,··· ,n∑
j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

η

l∏
ι=1

un,jιqr,pι
un,jιqr,pι

⇔σl
rα

l
2 → η ⇔ α →

(
η

σl
r

) 2
l

(79)

This completes the proof.

This establishes the necessary and sufficient condition for the approximation in the projection direction vec(unq
⊤
r )

⊗l.
At this stage, we have successfully aligned one side of the dumpling wrapper.

B.3.3 Approximation Relationship in the Projection Direction of vec(vrq⊤r )⊗l

Lemma B.6. The condition
β → 1 (80)

is necessary and sufficient for w̌ to approximate ŵ + η vec(unq
⊤
r )

⊗l in the projection direction of vec(vrq⊤r )
⊗l.

Proof. To establish this result, we consider the explicit form of the approximation condition:〈
w̌⊗l, vec(vrq

⊤
r )

⊗l
〉
→
〈
ŵ + η vec(unq

⊤
r )

⊗l, vec(vrq
⊤
r )

⊗l
〉

⇔

〈r−1∑
ϕ=1

σϕvϕq
⊤
ϕ + σr(

√
αun +

√
βvr)q

⊤
r

⊗l

, (vrq
⊤
r )

⊗l

〉
→
〈
X̂⊗l + η(unq

T
r )

⊗l, (vrq
T
r )

⊗l
〉

(81)
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To verify that Equation (81) holds, we expand the inner product term into its component elements:

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

r−1∑
ϕ=1

σϕvϕq
⊤
ϕ + σr(

√
αun +

√
βvr)q

⊤
r

⊗l

j1p1···jlpl

(vrq
⊤
r )

⊗l
j1p1···jlpl

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

[
X̂⊗l + η(unq

⊤
r )

⊗l
]
j1p1···jlpl

(vrq
⊤
r )

⊗l
j1p1···jlpl

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι + σr(
√
αun,jι +

√
βvr,jι)qr,pι

 l∏
ι=1

vr,jιqr,pι

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

 l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι + σrvr,jιqr,pι

+ η

l∏
ι=1

un,jιqr,pι

 l∏
ι=1

vr,jιqr,pι

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι + σr(
√
αun,jι +

√
βvr,jι)qr,pι

 vr,jιqr,pι

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

r−1∑
ϕ=1

σϕvϕ,jιqϕ,pι + σrvr,jιqr,pι

 vr,jιqr,pι + η

l∏
ι=1

un,jιqr,pιvr,jιqr,pι (82)

Using the orthogonality of the singular vectors qr ⊥ qϕ (where ϕ = 1, · · · , r − 1), derived from the Singular Value
Decomposition (SVD), all terms involving qϕ,pιqr,pι vanish under the summation

∑r,··· ,r
p1=1,··· ,pl=1. Consequently, we

have:

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σr(
√
αun,jι +

√
βvr,jι)qr,pιvr,jιqr,pι

→
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

(
l∏

ι=1

σrvr,jιqr,pι
vr,jιqr,pι

+ η

l∏
ι=1

un,jιqr,pι
vr,jιqr,pι

)
(83)

Furthermore, using the orthogonality vr ⊥ un (by Lemma B.3), all terms involving un,jιvr,jι vanish under the
summation

∑n,··· ,n
j1=1,··· ,jl=1. This reduces the expression to:

⇔
n,··· ,n∑

j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σr

√
βvr,jιqr,pι

vr,jιqr,pι
→

n,··· ,n∑
j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σrvr,jιqr,pι
vr,jιqr,pι

⇔β
l
2 → 1 ⇔ β → 1 (84)

This completes the proof.

This establishes the necessary and sufficient condition for the approximation in the projection direction vec(vrq
⊤
r )

⊗l.
At this stage, we have successfully aligned another side of the dumpling wrapper.

B.3.4 Approximation Guarantee in Terms of Tensor Norm

We now formally present the proof of Theorem 4.3.

Proof. We begin by defining the residual tensor dp as follows:

dp := w̌ −
[
ŵ + η vec(unq

⊤
r )

⊗l
]
. (85)

According to the definitions of the tensor spectral norm and nuclear norm, we have:∥∥vec(unq
⊤
r )

⊗l
∥∥
∗ =

∥∥vec(vrq⊤r )⊗l
∥∥
∗ = 1. (86)

Here, un, vr, and qr are unit vectors, and hence their norms are all 1.
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Next, we define ds in terms of the spectral norm of dp, as established in Lemma A.7:

∥dp∥S = |⟨dp,ds⟩| , ∥ds∥∗ ≤ 1, ds ∈ Rnr◦l. (87)

From Corollary B.4, we know that ds must lie in the unit tensor space spanned by vec(unq
⊤
r )

⊗l and vec(vrq
⊤
r )

⊗l.
Specifically, we have:

ds = λun vec(unq
⊤
r )

⊗l + λvr vec(vrq
⊤
r )

⊗l ⇒ |λun |+ |λvr | ≤ 1. (88)

Using the results from Lemma B.5 and Lemma B.6, we can directly compute the inner product:

⟨dp,ds⟩ =
〈
w̌ −

[
ŵ + η vec(unq

⊤
r )

⊗l
]
, λun

vec(unq
⊤
r )

⊗l + λvr vec(vrq
⊤
r )

⊗l
〉

= λun

〈
w̌ −

[
ŵ + η vec(unq

⊤
r )

⊗l
]
, vec(unq

⊤
r )

⊗l
〉
+ λvr

〈
w̌ −

[
ŵ + η vec(unq

⊤
r )

⊗l
]
, vec(vrq

⊤
r )

⊗l
〉

= λun

n,··· ,n∑
j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σr

√
αun,jιqr,pι

un,jιqr,pι
− η

l∏
ι=1

un,jιqr,pι
un,jιqr,pι

+ λvr

n,··· ,n∑
j1=1,··· ,jl=1

r,··· ,r∑
p1=1,··· ,pl=1

l∏
ι=1

σr

√
βvr,jιqr,pιvr,jιqr,pι −

l∏
ι=1

σrvr,jιqr,pιvr,jιqr,pι

= λun(σ
l
rα

l
2 − η) ∥un∥2l2 ∥qr∥2l2 + λvrσ

l
r(β

l
2 − 1) ∥vr∥2l2 ∥qr∥2l2

= λun
(σl

rα
l
2 − η) + λvrσ

l
r(β

l
2 − 1). (89)

Finally, we establish the upper bound for the spectral norm of dp:

∥dp∥S = |⟨dp,ds⟩| ≤ |λun | ·
∣∣∣σl

rα
l
2 − η

∣∣∣+ |λvr | · σl
r ·
∣∣∣β l

2 − 1
∣∣∣ . (90)

As w̌ aligns with the projection directions vec(unq
⊤
r )

⊗l and vec(vrq
⊤
r )

⊗l, we have σl
rα

l
2 → η and β

l
2 → 1. Conse-

quently, we obtain:

∥dp∥S −→ 0. (91)

This completes the proof.

This guarantees that, in terms of the spectral norm, the rank-1 tensor solution w̌ approximates the desired solution
wescape. This final step is analogous to perfectly sealing the edges of a dumpling, ensuring that the wrapper is neatly and
tightly secured.

B.4 Proof of Theorem 4.4

This subsection is devoted to proving one of the most important theorems in our work: Theorem 4.4.

Since the validity of Theorem 4.3 depends on the condition β → 1, we focus here on deriving the range of α that
guarantees X̌ can escape the local minimum X̂ in the matrix space. To accomplish this, we perform a Taylor expansion
of Equation (3) around X̂ and leverage the Restricted Strong Smoothness (RSS) property to analyze the solution.

In the first and second subsubsections, we compute the first-order and second-order terms of the Taylor expansion
around X̂ . In the third subsubsection, these results are used to identify the range of α that satisfies the escape condition.

B.4.1 First-Order Taylor Expansion Term at X̂

Lemma B.7. The first-order Taylor expansion term of f(XX⊤) at X̂X̂⊤ satisfies:〈
∇f(X̂X̂⊤), X̌X̌⊤ − X̂X̂⊤

〉
= λnσ

2
rα, (92)

where λn is the smallest eigenvalue of ∇f(X̂X̂⊤), σr represents the smallest singular of X̂ .
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Proof. We start by expanding ⟨∇f(X̂X̂⊤), X̌X̌⊤ − X̂X̂⊤⟩ as follows:

=

〈
∇f(X̂X̂⊤),

r−1∑
ϕ=1

σ2
ϕvϕv

⊤
ϕ + σ2

r(
√
αun +

√
βvr)(

√
αun +

√
βvr)

⊤ −
r∑

ϕ=1

σ2
ϕvϕv

⊤
ϕ

〉

=
〈
∇f(X̂X̂⊤), σ2

r(
√
αun +

√
βvr)(

√
αun +

√
βvr)

⊤ − σ2
rvrv

⊤
r

〉
=
〈
∇f(X̂X̂⊤), σ2

r

(√
αunu

⊤
n

√
α+

√
αunv

⊤
r

√
β +

√
βvru

⊤
n

√
α+

√
βvrv

⊤
r

√
β − vrv

⊤
r

)〉
=
〈
∇f(X̂X̂⊤), σ2

r

(
αunu

⊤
n +

√
αβunv

⊤
r +

√
βαvru

⊤
n + (β − 1) vrv

⊤
r

)〉
=
〈
∇f

(
X̂X̂⊤

)
, σ2

rαunu
⊤
n

〉
(93)

Next, we expand the quadratic term (
√
αun +

√
βvr)(

√
αun +

√
βvr)

⊤:

=
〈
∇f(X̂X̂⊤), σ2

r

[
(
√
αun +

√
βvr)(

√
αun +

√
βvr)

⊤ − vrv
⊤
r

]〉
=
〈
∇f(X̂X̂⊤), σ2

r

(
αunu

⊤
n +

√
αβunv

⊤
r +

√
βαvru

⊤
n + (β − 1)vrv

⊤
r

)〉
. (94)

The terms involving ∇f(X̂X̂⊤)vr and ∇f(X̂X̂⊤)⊤vr vanish due to the orthogonality condition ∇f(X̂X̂⊤)vϕ = 0

for all vϕ (ϕ = 1, . . . , r) and the fact that ∇f(X̂X̂⊤) is a symmetric matrix. Consequently, the only remaining non-zero
term is: 〈

∇f(X̂X̂⊤), X̌X̌⊤ − X̂X̂⊤
〉
=
〈
∇f(X̂X̂⊤), σ2

rαunu
⊤
n

〉
= σ2

rαTr
(
∇f(X̂X̂⊤)⊤unu

⊤
n

)
= σ2

rαTr
(
u⊤
n∇f(X̂X̂⊤)⊤un

)
= σ2

rαTr
(
u⊤
n∇f(X̂X̂⊤)un

)
= σ2

rαu
⊤
n∇f(X̂X̂⊤)un = λnσ

2
rα (95)

This completes the proof.

B.4.2 Second-Order Taylor Expansion Term at X̂

Lemma B.8. The second-order Taylor expansion term of f(XX⊤) at X̂X̂⊤ satisfies:∥∥∥X̌X̌⊤ − X̂X̂⊤
∥∥∥2
F
= σ4

r

[
α2 + 2αβ + (β − 1)2

]
, (96)

where σr represents the smallest singular value of X̂ .

Proof. The Frobenius norm squared can be expressed as:∥∥∥X̌X̌⊤ − X̂X̂⊤
∥∥∥2
F
= Tr

[
(X̌X̌⊤ − X̂X̂⊤)(X̌X̌⊤ − X̂X̂⊤)⊤

]
(97)

Substituting the expression of X̌X̌⊤ − X̂X̂⊤, we have:

= σ4
r Tr

[(
αunu

⊤
n +

√
αβunv

⊤
r +

√
βαvru

⊤
n + (β − 1)vrv

⊤
r

)(
αunu

⊤
n +

√
αβunv

⊤
r +

√
βαvru

⊤
n + (β − 1)vrv

⊤
r

)]
Expanding the terms results in:

= σ4
r Tr

(
αunu

⊤
nαunu

⊤
n

)
+ σ4

r Tr
(
αunu

⊤
n

√
αβunv

⊤
r

)
+ σ4

r Tr
(
αunu

⊤
n

√
βαvru

⊤
n

)
+ σ4

r Tr
(
αunu

⊤
n (β − 1)vrv

⊤
r

)
+ σ4

r Tr
(√

αβunv
⊤
r αunu

⊤
n

)
+ σ4

r Tr
(√

αβunv
⊤
r

√
αβunv

⊤
r

)
+ σ4

r Tr
(√

αβunv
⊤
r

√
βαvru

⊤
n

)
+ σ4

r Tr
(√

αβunv
⊤
r (β − 1)vrv

⊤
r

)
+ σ4

r Tr
(√

βαvru
⊤
nαunu

⊤
n

)
+ σ4

r Tr
(√

βαvru
⊤
n

√
αβunv

⊤
r

)
+ σ4

r Tr
(√

βαvru
⊤
n

√
βαvru

⊤
n

)
+ σ4

r Tr
(√

βαvru
⊤
n (β − 1)vrv

⊤
r

)
+ σ4

r Tr
(
(β − 1)vrv

⊤
r αunu

⊤
n

)
+ σ4

r Tr
(
(β − 1)vrv

⊤
r

√
αβunv

⊤
r

)
+ σ4

r Tr
(
(β − 1)vrv

⊤
r

√
βαvru

⊤
n

)
+ σ4

r Tr
(
(β − 1)vrv

⊤
r (β − 1)vrv

⊤
r

)
(98)
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Using the orthogonality condition un ⊥ vr, the cross terms involving u⊤
n vr, v⊤r un, unv

⊤
r , and vru

⊤
n vanish. Further-

more, since u⊤
n un = 1 and v⊤r vr = 1, the remaining terms simplify to the following:

= Tr
[
(X̌X̌⊤ − X̂X̂⊤)(X̌X̌⊤ − X̂X̂⊤)⊤

]
= σ4

r Tr
(
αunu

⊤
nαunu

⊤
n

)
+ σ4

r Tr
(√

αβunv
⊤
r

√
βαvru

⊤
n

)
+ σ4

r Tr
(√

βαvru
⊤
n

√
αβunv

⊤
r

)
+ σ4

r Tr
(
(β − 1)vrv

⊤
r (β − 1)vrv

⊤
r

)
= σ4

r

[
α2 + αβ + βα+ (β − 1)2

]
= σ4

r

[
α2 + 2αβ + (β − 1)2

]
(99)

This completes the proof.

B.4.3 Range of α for Escaping the Local Minimum X̂

In this subsection, we formally present the proof of Theorem 4.4.

Proof. Let M̂ = X̂X̂⊤ and M̌ = X̌X̌⊤. By performing a Taylor expansion of f(M) around M̂ , we have:

f(M̌) = f(M̂) +
〈
∇f(M̂), M̌ − M̂

〉
+

1

2

[
∇2f(M̃)

] 〈
M̌ − M̂, M̌ − M̂

〉
(100)

where M̃ is a convex combination of M̌ and M̂ .

Using the Restricted Smoothness (RSS) property, we further bound the second-order term:

f(M̌) < f(M̂) +
〈
∇f(M̂), M̌ − M̂

〉
+

Ls

2

∥∥∥M̌ − M̂
∥∥∥2
F

= f(M̂) + λnσ
2
rα+

Ls

2
σ4
r

[
α2 + 2αβ + (β − 1)2

]
(101)

where the first-order term is derived from Lemma B.7, and the second-order term is from Lemma B.8.

For f(M̌) to be smaller than f(M̂), it suffices to ensure:

λnσ
2
rα+

Ls

2
σ4
r

[
α2 + 2αβ + (β − 1)2

]
< 0

⇔ Ls

2
σ2
r

[
α2 + 2αβ + (β − 1)2

]
< −λnα

⇔ Ls

2
σ2
r

[
α+ 2β +

(β − 1)2

α

]
< −λn (102)

Based on the approximation condition in Theorem 4.3, assume β = 1. Substituting β = 1 into the inequality gives:
Ls

2
σ2
r(α+ 2) < −λn ⇔ α <

−2λn

Lsσ2
r

− 2 (103)

This completes the proof.

Under this condition, f(X̌X̌⊤) is guaranteed to be smaller than f(X̂X̂⊤), which implies that the local minimum at
M̂ = X̂X̂⊤ is escaped in the matrix space.

C Experimental Details and Validation

C.1 Experimental Environment

All experiments were conducted on a personal laptop running Ubuntu as the operating system. The computations were
accelerated using a GeForce GTX 1660 Ti GPU with CUDA version 11.1 and cuDNN version 8.0.5.

For efficient matrix and tensor computations, the experiments utilized JAX (version 0.3.8) [37], which leverages GPU
acceleration through CUDA and cuDNN. Additionally, Optax (version 0.1.4) was employed for optimization routines,
and Chex (version 0.1.6) was used for testing and debugging. Both Optax and Chex are part of the DeepMind JAX
Ecosystem [38].

This setup provided a robust and efficient computational environment, enabling precise and high-performance experi-
mentation.
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C.2 Numerical Validation of Theoretical Bounds

In this subsection, we present the specific numerical results from the perturbed matrix completion experiments discussed
in the main text, focusing on the case where n = 11 under the application of LEAC-Simulated.

Specifically, we consider M∗ = ZZT , where:

Z = [1 0 1 0 1 0 1 0 1 0 1]
⊤ ⇒ Tr(M∗) = 6.0 (104)

The sensing matrix was constructed based on the formulation in Equation (17). The computed Restricted Strong
Smoothness (RSS) constant and Restricted Strong Convexity (RSC) constant are:

Ls = 0.9987, αs = 0.2638 (105)

The algorithm encountered a local minimum at approximately the 50th iteration, at which point the following values
were observed:

σr = 1.3923e− 7, λn = −1.00025, (106)

vr = [0.6168, 0.1730,−0.0742, 0.0171, 0.0160,−0.4711,−0.4043, 0.2654,−0.2097,−0.2782, 0.0806]
⊤ (107)

qr = [1.0], (108)

un = [0.4083, 0.0, 0.4085, 0.0, 0.4081, 0.0, 0.4083, 0.0, 0.4082, 0.0, 0.4082]
⊤ (109)

∥X̂X̂⊤ −M∗∥2F = 36.0. (110)

At this point, the inequality in Equation (10) holds, which is critical for our algorithm:

1.00025 = −λn ≥ 0.7915 =
αs∥X̂X̂⊤ −M∗∥2F

2Tr(M∗)
≥ Lsσ

2
r

2
= 9.6793e− 15 (111)

The upper bound of α for escaping the local minimum is computed as follows:

Υ =
−2λn

Lsσ2
r

− 2 = 103339150000000 ⇒ η = σl
rα

l
2 < σl

rΥ
l
2 = 2.8352 (112)

This result demonstrates that the step size required to escape in the matrix space (measured by
√
α) is significantly

larger than the step size required to escape in the tensor space (measured by η).

Next, we compute X̌ based on Equation (14) and derive its corresponding tensor w̌ in the lifted tensor space. The
distances between w̌ and ŵ, as well as w̌ and wescape, are given as:

∥w̌ − ŵ∥ = 2.8352 (113)
∥w̌ −wescape∥ = 5.6335e− 7 (114)

These results confirm that the tensor w̌ is indeed a rank-1 tensor that closely approximates wescape.

Finally, we compute the objective function values at X̌ and X̂ using Equation (3):

1.3319 = f(X̌X̌⊤) < f(X̂X̂⊤) = 3.0015 (115)

This demonstrates that our LEAC-Simulated mechanism, guided by the oracle from the tensor space, deterministically
escapes the local minimum X̂ in a single step to reach the point X̌ .
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