
Algorithmic Regularization in Tensor Optimization:
Towards a Lifted Approach in Matrix Sensing

Ziye Ma
Department of EECS

UC Berkeley
ziyema@berkeley.edu

Javad Lavaei
Department of IEOR

UC Berkeley
lavaei@berkeley.edu

Somayeh Sojoudi
Department of EECS, ME

UC Berkeley
sojoudi@berkeley.edu

Abstract

Gradient descent (GD) is crucial for generalization in machine learning models, as
it induces implicit regularization, promoting compact representations. In this work,
we examine the role of GD in inducing implicit regularization for tensor optimiza-
tion, particularly within the context of the lifted matrix sensing framework. This
framework has been recently proposed to address the non-convex matrix sensing
problem by transforming spurious solutions into strict saddles when optimizing
over symmetric, rank-1 tensors. We show that, with sufficiently small initialization
scale, GD applied to this lifted problem results in approximate rank-1 tensors and
critical points with escape directions. Our findings underscore the significance
of the tensor parametrization of matrix sensing, in combination with first-order
methods, in achieving global optimality in such problems.

1 Introduction

This paper is dedicated to addressing the non-convex problem of matrix sensing, which has numerous
practical applications and is rich in theoretical implications. Its canonical form can be written as:

find M ∈ Rn×n (1)
s.t. A(M) = A(M∗) rank(M) ≤ r,M � 0.

A(·) : Rn×n 7→ Rm is a linear operating consisting of m sensing matrices {Ai}mi=1 ∈ Rn×n where
A(M) = [〈A1,M〉, . . . , 〈Am,M〉]T . The sensing matrices and the measurements b = A(M∗) are
given, while M∗ is an unknown low-rank matrix to be recovered from the measurements. The true
rank of M∗ is bounded by r, usually much smaller than the problem size n. More importantly, since
A is linear, one can replace Ai with (Ai + A>i )/2 without changing b, and therefore all sensing
matrices can be assumed to be symmetric.

The aforementioned problem serves as an extension of both compressed sensing [1], which is widely
applied in the field of medical imaging, and matrix completion [2, 3], which possesses an array of
notable applications [4]. Additionally, this problem emerges in a variety of real-world situations such
as phase retrieval [5–7], motion detection [8], and power system state estimation [9, 10]. A recent
study by [11] established that any polynomial optimization problem can be converted into a series
of problems following the structure of (1), thereby underscoring the significance of investigating
this specific non-convex formulation. Within the realm of contemporary machine learning, (1) holds
relevance as it is equivalent to the training problem for a two-layer neural network with quadratic
activations [12]. In this context, m denotes the number of training samples, r is the size of the hidden
layer, and the sensing matrices Ai = xix

>
i are rank-1, with xi representing the ith datapoint.

To solve (1), an increasingly popular approach is the Burer-Monteiro (BM) factorization [13], in
which the low-rank matrix M is factorized into M = XX> with X ∈ Rn×r, thereby omitting the
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constraint, making it amenable to simple first-order methods such as gradient descent (GD), while
scaling with O(nr) instead of O(n2). The formulation can be formally stated as follows:

min
X∈Rn×r

f(X) :=
1

2
‖A(XXT )− b‖2 =

1

2
‖A(XXT − ZZ>)‖2 (Unlifted Problem) (2)

with Z ∈ Rn×r being any ground truth representation such that M∗ = ZZ>. Since (2) is a non-
convex problem, it can have spurious local minima1, making it difficult to recover M∗ in general.
The pivotal concept in solving (1) and (2) to optimality is the notion of Restricted Isometry Property
(RIP), which measures the proximity between ‖A(M)‖2F and ‖M‖2F for all low-rank matrices M .
This proximity is captured by a constant δp, where δp = 0 means A(M) = M for matrices up to
rank p, leading to exact isometry case, and δp → 1 implying a problematic scenario in which the
proximity error is large. For a precise definition, please refer to Appendix A.3.

Conventional wisdom suggests that there is a sharp bound on the RIP constant that controls the
recoverability of M∗, with 1/2 being the bound for (2). [14, 15] prove that if δ2r < 1/2, then all
local minimizers are global minimizers, and conversely if δ2r ≥ 1/2, counterexamples can be easily
established. Similar bounds of 1/3 are also derived for general objectives [16, 17], demonstrating
the importance of the notion of RIP. However, more recent studies reveal that the technique of
over-parametrization (by using X ∈ Rn×rsearch instead, with rsearch > r) can take the sharp RIP bound
to higher values [18, 19]. Recently, it has also been shown that using a semidefinite programming
(SDP) formulation (convex relaxation) can lead to guaranteed recovery with a larger RIP bound that
approaches 1 in the transition to the high-rank regime when n ≈ 2r [20]. These works all show
the efficacy of over-parametrization, shedding light on a powerful way to find the global solution of
complex non-convex problems. However, all of these techniques fail to handle real-world cases with
δ2r → 1 in the low-rank regime. To this end, a recent work [21] drew on important concepts from the
celebrated Lasserre’s Hierarchy [22] and proposed a lifted framework based on tensor optimization
that could convert spurious local minimizers of (2) into strict saddle points in the lifted space, for
arbitrary RIP constants in the r = 1 case. We state this lifted problem below:

min
w∈Rn◦l

‖〈A⊗l,w ⊗w〉 − b⊗l‖2F (Lifted Problem, r = 1) (3)

where w is an l-way, n-dimensional tensor, and A⊗l and b⊗l are tensors "lifted" from A and b via
tensor outer product. We defer the precise definition of tensors and their products to Section 2. The
main theorem of [21] states that when r = 1, for some appropriate l, the first-order points (FOP) of
(2) will be converted to FOPs of (3) via lifting, and that spurious second order points (SOP) of (2) will
be converted into strict saddles, under some technical conditions, provided that w is symmetric, and
rank-1. This rank-1 constraint on the decision variable w is non-trivial, since finding the dominant
rank-1 component of symmetric tensors is itself a non-convex problem in general, and requires a
number of assumptions for it to be provably correct [23, 24]. This does not even account for the
difficulties of maintaining the symmetric properties of tensors, which also has no natural guarantees.
Therefore, although this lifted formulation may be promising in the pursuit of global minimum,
there are still major questions to be answered. Most importantly, it is desirable to know whether the
symmetric, rank-1 condition is necessary, and if so, how to achieve it without explicit constraints?

The necessity of the condition in question can be better understood through insights from [25]. The
authors argue that over-parametrizing non-convex optimization problems can reshape the optimization
landscape, with the effect being largely independent of the cost function and primarily determined
by the parametrization. This notion is consistent with [21], which contends that over-parametrizing
vectors into tensors can transform spurious local solutions into strict saddles. However, [25] specif-
ically examines the parametrization from vectors/matrices to tensors, concluding that stationary
points are not generally preserved under tensor parametrization, contradicting [21]. This implies
that the symmetric, rank-1 constraints required in (3) are crucial for the conversion of spurious
points. Furthermore, in Lasserre’s Hierarchy, to increase the tightness of the relaxation, a set of linear
constraints called the "moments constraints" are needed even in unconstrained problems [26]. These
constraints are necessary conditions for the first row/column of the moment matrix to correspond to
rank-1 tensors, further showing the necessity of searching over rank-1 tensors.

It is essential to devise a method to encourage tensors to be near rank-1, with implicit regularization
as a potential solution. There has been a recent surge in examining the implicit regularization effects

1A spurious point satisfies first-order and second-order necessary conditions but is not a global minimum.
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in first-order optimization methods, such as gradient descent (GD) and stochastic gradient descent
(SGD) [27], which has been well-studied in matrix sensing settings [28–30, 12]. This intriguing
observation has prompted us to explore the possible presence of similar implicit regularization in
tensor spaces. Our findings indicate that when applying GD to the tensor optimization problem
(3), an implicit bias can be detected with sufficiently small initialization points. This finding does
not directly extend from its matrix counterparts due to the intricate structures of tensors, resulting
in a scarcity of useful identities and well-defined concepts for even fundamental properties such
as eigenvalues. Furthermore, we show that when initialized at a symmetric tensor, the entire GD
trajectory remains symmetric, completing the requirements.

In this paper, we demonstrate that over-parametrization alone does not inherently simplify non-convex
problems. However, employing a suitable optimization algorithm offers a remarkably straightfor-
ward solution, as this specific algorithm implicitly constrains our search to occur within a compact
representation of the over-parametrized space without necessitating manual embeddings or transfor-
mations. This insight further encourages the investigation of a (parametrization, algorithm) pair for
solving non-convex problems, thereby enhancing our understanding of achieving global optimality in
non-convex problems.

1.1 Related Works

Over-parametrization in matrix sensing. Except for the lifting formulation (3), there are two
mainstream approaches to over-parametrization in matrix sensing. The first one is done via searching
over Y ∈ Rn×rsearch instead of X ∈ Rn×r, and using some distance metric to minimize the distance
between A(Y Y >) and b. Using an l2 norm, [18, 19] established that if rsearch > r[(1 + δn)/(1 −
δn) − 1]2/4, with r ≤ rsearch < n, then every second-order point Ŷ ∈ Rn×rsearch satisfies that
Ŷ Ŷ > = M∗. [31] showed that even in the over-parametrized regime, noise can only finitely
influence the optimization landscape. [30] offered similar results for an l1 loss under good enough
RIP constant. Another popular approach to over-paramerization is to use a convex SDP formulation,
which is a convex relaxation of (1) [32]. It has been known for years that as long as δ2r < 1/2, then
the global optimality of the SDP formulation correspond to the ground truth M∗ [33]. Recently [20]
updated this bound to 2r/(n+ (n− 2r)(2l − 5)), which can approach 1 if n ≈ 2r.

Algorithm regularization in over-parametrized matrix sensing. [12, 34] prove that the conver-
gence to global solution via GD is agnostic of rsearch, in that it only depends on initialization scale,
step-size, and RIP property. [30] demonstrates the same effect for an l1 norm, and further showed that
a small initialization nullifies the effect of over-parametrization. Besides these works, [28] refined
this analysis, showing that via a sufficiently small initialization, the GD trajectory will make the
solution implicitly penalize towards rank-r matrices after a small number of steps. [29] took it even
further by showing that the GD trajectory will first make the matrix rank-1, rank-2, all the way to
rank-r, in a sequential way, thereby resembling incremental learning.

Implicit bias in tensor learning. The line of work [35–37] demonstrates that for a class of tensor
factorization problems, as long as the initialization scale is small, the learned tensor via GD will be
approximately rank-1 after an appropriate number of steps. Our paper differs from this line of work
in three meaningful ways: 1) The problem considered in those works are optimization problems over
vectors, not tensors, and therefore the goal is to learn the structure of a known tensor, rather than
learning a tensor itself; 2) Our objective is more general, with the complication of the linear operator
A, making the analysis adaptable to more problems; 3) Our proof relies directly on tensor algebra
instead of adopting a dynamical systems perspective, providing deeper insights into tensor training
dynamics while dispensing with the impractical assumption of an infinitesimal step-size.

1.2 Main Contributions

1. We demonstrate that, beyond vector and matrix learning problems, optimization of differ-
entiable objectives, such as the l2 norm, through Gradient Descent (GD) can encourage
a more compact representation for tensors as decision variables. This results in tensors
being approximately rank-1 after a number of gradient steps. To achieve this, we employ
an innovative proof technique grounded in tensor algebra and introduce a novel tensor
eigenvalue concept, the variational eigenvalue (v-eigenvalue), which may hold independent
significance due to its ease of use in optimization contexts.
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2. We show that if a tensor is a first-order point of the lifted objective (3) and is approximately
rank-1, then its rank-1 component can be mapped to an FOP of (2), implying that all FOPs
of (3) lie in a small sphere around the lifted FOPs of (2). Furthermore, these FOPs possess
an escape direction when reasonably distant from the ground truth solution, irrespective of
the Restricted Isometry Property (RIP) constants.

3. We present a novel lifted framework that optimizes over symmetric tensors to accommodate
the over-parametrization of matrix sensing problems with arbitrary r. This approach is
necessary because directly extending the work of [21] from r = 1 to higher values may lead
to non-cubical and, consequently, non-symmetric tensors.

2 Preliminaries

Please refer to Appendix A.1 and A.2 for the notations and definitions of first-order and second-order
conditions. Here, we introduce two concepts that are critical in understanding our main results.
Definition 1 (Tensors and Products). We define an l-way tensor as:

a = {ai1i2...il |1 ≤ ik ≤ nk, 1 ≤ k ≤ l} ∈ Rn1×···×nl

Moreover, if n1 = · · · = nl, then we call this tensor an l-order (or l-way), n-dimensional tensor. Rn◦l
is an abbreviated notion for n ◦ l := n× · · · × n. In this work, tensors are denoted with bold letters
unless specified otherwise. The tensor outer product, denoted as ⊗, of 2 tensors a and b, respectively
of orders l and p, is a tensor of order l + p, namely c = a⊗ b with ci1...ilj1...jp = ai1...ilbj1...jp . We
also use the shorthand a⊗l for repeated outer product of l times for arbitrary tensor/matrix/vector
a. 〈a,b〉i1,...,id denotes tensor inner product along dimensions i1, . . . , id (with respect to the first
tensor), in which we simply sum over the specified dimensions after the outer product a ⊗ b is
calculated. This means that the inner product is of l + p− d orders. Please refer to Appendix A.3 for
a more in-depth review on tensors, especially on its symmetry and rank.
Definition 2 (Restricted Strong Smoothness (RSS) and Restricted Strong Convexity (RSC)). The
linear operator A : Rn×n 7→ Rm satisfies the (Ls, r)-RSS property and the (αs, r)-RSC property if

f(M)− f(N) ≤ 〈M −N,∇f(N)〉+
Ls
2
‖M −N‖2F

f(M)− f(N) ≥ 〈M −N,∇f(N)〉+
αs
2
‖M −N‖2F

are satisfied, respectively for all M,N ∈ Rn with rank(M), rank(N) ≤ r. Note that RSS and RSC
provide a more expressible way to represent the RIP property, with δr = (Ls − αs)/(Ls + αs).

3 The Lifted Formulation for General r

A natural extension of (3) to general r requires that instead of optimizing over X ∈ Rn×r, we
optimize over R[n×r]◦l tensors, and simply making tensor outer products between w to be inner
products. However, such a tensor space is non-cubical, and subsequently not symmetric. This is the
higher-dimensional analogy of non-square matrices, which lacks a number of desirable properties,
as per the matrix scenario. In particular, it is necessary for our approach to optimize over a cubical,
symmetric tensor space since in the next section we prove that there exists an implicit bias of the
gradient descent algorithm under that setting.

In order to do so, we simply vectorize X ∈ Rn×r into vec(X) ∈ Rnr, and optimize over the tensor
space of Rnr◦l, which again is a cubical space. In order to convert a tensor w ∈ Rnr◦l back to
R[n×r]◦l to use a meaningful objective, we introduce a new 3-way permutation tensor P ∈ Rn×r×nr
that "unstacks" vectorized matrices. Specifically,

〈P, vec(X)〉3 = X ∀X ∈ Rn×r, n, r ∈ Z+

Such P can be easily constructed via filling appropriate scalar "1"s in the tensor. Via Lemma A.4, we
also know that

〈P⊗l, vec(X)⊗l〉3∗[l] = (〈P, vec(X)〉3)⊗l = X⊗l (4)

where [l] denotes the integer set [1, . . . , l], and c ∗ [l] denotes [c, 2c, . . . , c ∗ l] for some c ∈ Z+. For
notational convenience, we abbreviate 〈P⊗l,w〉3∗[l] as P(w) for any arbitrary z-dimensional tensor
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w where z can be broken down into the product of two positive integers. Thus, using (4), we can
extend (3) to a problem of general r, yet still defined over a cubical tensor space:

min
w∈Rnr◦l

‖〈A⊗l, 〈P(w),P(w)〉2∗[l]〉 − b⊗l‖2F (Lifted formulation, general r) (5)

Let us define a 3-way tensor A ∈ Rm×n×n so that Akij = (Ak)ij ∀k ∈ [m], (i, j) ∈ [n] × [n].
Define f l(·) : Rn◦2l 7→ R and hl(·) : R[n×r]◦l 7→ R as f l(M) := ‖〈A⊗l,M〉 − b⊗l‖2F and
hl(w) = f l(〈w,w〉2∗[l]), with ∇f l(·) = ∇Mf

l(·) and ∇hl(·) = ∇wh
l(·).

We prove that (5) has all the good properties detailed in [21] for (3). In particular, we prove that the
symmetric, rank-1 FOPs of (5) have a one-to-one correspondence with those of (2), and that those
FOPs that are reasonably separated from M∗ or have a small rth singular value can be converted to
strict saddle points via some level of lifting. For the detailed theorems and proofs, please refer to
Appendix B.

4 Implicit Bias of Gradient Descent in Tensor Space

In this section, we study why and how applying gradient descent to (5) will result in an implicit bias
towards to rank-1 tensors. Prior to presenting the proofs, we shall elucidate the primary intuition
behind how GD contributes to the implicit regularization of (2). This will aid in comprehending
the impact of implicit bias on (5), as they share several crucial observations, albeit encountering
greater technical hurdles. Consider the first gradient step of (2), initialized at a random point
X0 ∈ Rn×rsearch = εX with ‖X‖2F = 1 and rsearch ≥ r:

X1 = X0 − η∇h(X0) = (I + η [A∗A(M∗)])X0 −
[
A∗A(X0X

>
0 )
]
X0

= (I + η [A∗A(M∗)])X0 − ε2
[
A∗A(XX>)

]
X0

= (I + η [A∗A(M∗)])X0 +O(ε3)

where η is the step-size. Therefore, if ε is chosen to be small enough, we have that

Xt ≈ (I + ηA∗A(M∗))tX0 as ε→ 0

Again, according to the symmetric assumptions on A, we can apply spectral theorem on
A∗A(M∗) =

∑n
i=1 λiviv

>
i for which the eigenvectors are orthogonal to each other. It follows

that Xt ≈
(∑n

i=1(1 + ηλi)
tviv

>
i

)
X0.

In many papers surveyed above on making an argument of implicit bias, it is assumed that there is
very strong geometric uniformity, or under the context of this paper, it means that Ls/αs ≈ 1. Under
this assumption, we have f(M) ≈ f(N) + 〈M −N,∇f(M)〉+ ‖M −N‖2F /2, leading to the fact
that ∇2f(M) = A∗A ≈ I . This immediately gives us A∗A(M∗) ≈M∗ so that λr+1, . . . , λn ≈ 0
as M∗ is by assumption a rank-r matrix. This further implies that Xt ≈

(∑r
i=1(1 + ηλi)

tviv
>
i

)
X0,

which will become a rank-r matrix, achieving the effect of implicit regularization, as X is now
over-parametrized by having rsearch ≥ r.

However, when tackling the implicit regularization problem in tensor space, one key deviation from
the aforementioned procedure is that Ls/αs will be relatively large, as otherwise there will be no
spurious solutions, even in the noisy case [14, 31], which is also the motivation for using a lifted
framework in the first place. Therefore, instead of saying thatA∗A(M∗) ≈M∗, we aim to show that
the gap between the eigenvalues of a comparable tensor term will enlarge as we increase l, making
the tensor predominantly rank-1. This observation demonstrates the power of the lifting technique,
while at the same time eliminates the critical dependence on a small Ls/αs factor that is in practice
often unachievable due to requiring sample numbers (m) in the asymptotic regime [38].

Therefore, in order to establish an implicit regularization result for (5), there are four major steps that
need to be taken:

1. Proving that a point on the GD trajectory wt admits a certain breakdown in the form
wt = 〈Zt,w0〉 −Et for some Zt and Et.

2. Proving that the spectral norm (equivalence of largest singular value) of Et is small (scales
with initialization scale ε)
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3. Proving that 〈Zt,w0〉 has a large separation between its largest and second largest eigenval-
ues using a tensor version of Weyl’s inequality.

4. Showing that, with the above holding true, wt is predominantly rank-1 after some step t∗.

Lemmas 12, 13, 2, and Theorem 1 correspond to the above four steps, respectively. The reader is
referred to the lemmas and theorem for more details.

4.1 A Primer on Tensor Algebra and Maintaining Symmetric Property

We start with the spectral norm of tensors, which resembles the operator norm of matrices [39].
Definition 3. Given a cubic tensor w ∈ Rn◦l, its spectral norm ‖ · ‖S is defined respectively as:

‖w‖S = sup
{
|〈w, u⊗l〉| ‖u‖2 = 1, u ∈ Rn

}
Next, we introduce the notion of eigenvalues for tensors. There are many related definitions, as
outlined in [40]. However, in this paper, we introduce a novel variational characterization of
eigenvalues in Appendix C.1 that resembles the Courant-Fisher minimax definition for eigenvalues
of matrices, called the v-Eigenvalue. We denote the ith v-Eigenvalue of w as λvi (w). Note this is a
new definition that is fist introduced in this paper and might be of independent interest outside of the
current scope. It is apparent from the definition that ‖w‖S = λv1(w). This definition could help us in
precisely defining the meaning of approximate rank-1 tensors, as will be explained later.

Next, since most of our analysis relies on the symmetry of the underlying tensor, it is desirable to
show that every tensor along the optimization trajectory of GD on (5) remains symmetric if started
from a symmetric tensor. Please find its proof in Appendix C.2.
Lemma 1. If the GD trajectory of (5) {wt}∞t=0 is initialized at a symmetric rank-1 tensor w0, then
{wt}∞t=0 will all be symmetric.

4.2 Main Ideas and Proof Sketch

In this subsection, we highlight the main ideas behind implicit bias in GD. Lemma 12 and 13 details
the first and second step, and are deferred to Appendix C.2. The proofs to the results of this section
can also be found in that appendix. The lemmas alongside with their proofs are highly technical and
not particularly enlightening, therefore omitted here for simplicity. However, the most important
takeaway is that for the tth iterate along the GD trajectory of (5), we have the decomposition

wt+1 = 〈Zt,w0〉 −Et := w̃t −Et

for some Zt and Et such that ‖Et‖S = O(ε3). This essentially means that by scaling the initialization
w0 to be small in scale, the error term Et can be ignored from a spectral standpoint, and scales with ε
at a cubic rate. This will soon be proven to be useful next.
Lemma 2. Given wt along the GD trajectory of (5), its first two v-eigenvalues, as defined in
definition 9, satisfy the relation

λv2(wt)

λv1(wt)
≤ ‖x0‖l2(1 + ησl2(U))t + ‖Et‖S/ε
|v>1 x0|l(1 + ησl1(U))t − ‖Et‖S/ε

=
‖x0‖l2(1 + ησl2(U))t +O(ε2)

|v>1 x0|l(1 + ησl1(U))t −O(ε2)
(6)

where σ1(U) and σ2(U) denote the first and second singular values of U = 〈A∗rA,M∗〉 ∈ Rnr×nr,
and v1, v2 are the associated singular vectors.

Lemma 2 showcases that when ε is small, the ratio between the largest and second largest v-
eigenvalues of w is dominated by (‖x0‖l2(1 + ησl2(U))t)/(|v>1 x0|l(1 + ησl1(U))t).

Now, if either ‖x0‖l2 is large or |v>1 x0|l approaches 0 in value, then the ratio may be relatively large,
contradicting our claim. However, this issue can be easily addressed by letting x0 = v1 + g ∈ Rnr,
where g is a vector with each entry being i.i.d sampled from the Gaussian distribution N (0, ρ). Note
that since U = 〈Ar, b〉3, we can calculate U and v1 directly. Lemma 14 in Appendix C.2 shows
that with this initialization, |v>1 x0|l = O(1) and ‖x0‖l2 = O(1) with high probability if we select
ρ = O(1/nr). Therefore, the tth iterate along the GD trajectory of (5) satisfies

λv2(wt)

λv1(wt)
� (1 + ησl2(U))t

(1 + ησl1(U))t
(7)
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with hight probability if ρ is small. This implies that "the level of parametrization helps with separation
of eigenvalues", since increasing l will decrease ratio λv2(wt)/λ

v
1(wt) provided that σ1(U) ≥ 1.

Furthermore, regardless of the value of σ1(U), a larger t will make this ratio exponentially smaller,
proving the efficacy of algorithmic regularization of GD in tensor space.

By combining the above facts, we arrive at a major result showing how a small initialization could
make the points along the GD trajectory penalize towards rank-1 as t increases

Theorem 1. Given the optimization problem (5) and its GD trajectory over some finite horizon T ,
i.e., {wt}tTt=0 with wt+1 = wt − η∇hl(wt), where η is the stepsize, then there exist t(κ, l) ≥ 1 and
κ < 1 such that

λv2(wt)

λv1(wt)
≤ κ, ∀t ∈ [t(κ, l), tT ] (8)

if w0 is initialized as w0 = εx⊗l0 with a sufficiently small ε, where t(κ, l) is expressed as

t(κ, l) =

⌈
ln

(
‖x0‖l2
κ|v>1 x0|l

)
ln

(
1 + ησl1(U)

1 + ησl2(U)

)−1
⌉

(9)

By using the initialization introduced in Lemma 14, we can improve the result of Theoerem 1, which
does not need ε to be arbitrarily small. The full details are presented in Corollary 1 in Appendix C.2,
stating that as along as t � ln (1/κ) ln

(
(1 + ησl1(U))/(1 + ησl2(U))

)−1
, wt will be κ-rank-1, as

long as ε is chosen as a function of U, r, n, Ls, and κ. Note that we say a tensor w is "κ-rank-1" if
λv2(w)/λv1(w) ≤ κ.

5 Approximate Rank-1 Tensors are Benign

Now that we have established the fact that performing gradient descent on (5) will penalize the tensor
towards rank-1, it begs the question that wether approximate rank-1 tensors can also escape from
saddle points, which is the most important question under study in this paper. Please find the proofs
to the results in this section in Appendix D.

To do so, we first introduce a major spectral decomposition of symmetric tensors that is helpful.

Proposition 1. Given a symmetric tensor w ∈ Rnr◦l, it can be decomposed into two terms, namely
a term consisting of its dominant component and another term that is orthogonal to this direction:

w = ±λv1(w)w⊗ls + w† := wσ + w†, ws ∈ Rn, ‖ws‖2 = 1 (10)

where 〈w, w⊗ls 〉 = λv1(w) and 〈w†, w⊗ls 〉 = 0. Furthermore, if w is a κ-rank-1 tensor, then
‖w†‖S ≤ κλv1(wt).

Next, we characterize the first-order points of (5) with approximate rank-1 tensors in mind. Previously,
we showed that if a given FOP of (5) is symmetric and rank-1, it has a one-to-one correspondence
with FOPs of (2). However, if the FOPs of (5) are not exactly rank-1, but instead κ-rank-1, it is
essential to understand whether they maintain the previous properties. This will be addressed below.

Proposition 2. Assume that a symmetric tensor w ∈ Rnr◦l is an FOP of (5), meaning that (17a)
holds. If it is a κ-rank-1 tensor with κ ≤ O(1/‖M∗‖2F ), then it admits a decomposition as

w = ±λv1(w)ŵ⊗l + w†

with mat(ŵ) ∈ Rn×r being an FOP of (2) and ‖w†‖S ≤ κλv1(w) by definition.

The proposition above asserts that for any given FOP of (5), if it is κ-rank-1 rather than being truly
rank-1, it will consist of a rank-1 term representing a lifted version of an unlifted FOP, as well as
a term with a small spectral norm. Referring to (58), it is possible to achieve a significantly low
κ through a moderate number of iterations. This result, considered the cornerstone of this paper,
demonstrates that the use of gradient descent with small initialization will find critical points that are
lifted FOPs of (2) with added noise, maintaining a robust association between FOPs of (5) and (2).
This finding also facilitates this subsequent theorem:
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Theorem 2. Assume that a symmetric tensor ŵ ∈ Rnr◦l is an FOP of (5) that is κ-rank-1 with
κ ≤ O(1/‖M∗‖2F ). Consider its major spectral decomposition:

ŵ = λS x̂
⊗l + ŵ†, x̂ ∈ Rnr

Then it has a rank-1 escape direction if X̂ = mat(x̂) satisfies the inequality

‖M∗ − X̂X̂>‖2F ≥
Ls
αs
λr(X̂X̂

>) tr(M∗) +O(rκ1/l) (11)

where l is odd and large enough so that l > 1/(1− log2(2β)) and β is defined as

β =
Ls tr(M∗)λr(X̂X̂

>)

αs‖M∗ − X̂X̂>‖2F −O(rκ1/l)
.

This is the main theorem of this paper, since it conveys the message that by running GD on (5), all
critical points have escape directions as long as the point is not close to the ground truth solution,
showing promising results for the global extraction of ground truth solutions of (2).

6 Numerical Experiments

In this section2, after we run a given algorithm on (5) to completion and obtain a final tensor wT , we
then apply tensor PCA (detailed in Appendix E) on wT to extract its dominant rank-1 component
and recover XT ∈ Rn×r such that (wT )s = λs vec(XT )⊗l. Since wT will be approximately rank-1,
the success of this operation is expected [23, 24]. We consider a trial to be successful if the recovered
XT satisfies ‖XTX

>
T −M∗‖F ≤ 0.05. We also initialize our algorithm as per Lemma 14.

6.1 Perturbed Matrix Completion

The perturbed matrix completion problem is introduced in [20], which is a noisy version of classic
matrix completion problems. The A operator is introduced as

Aρ(M)ij :=

{
Mij , if (i, j) ∈ Ω

ρMij , otherwise
, (12)

where Ω is a measurement set such that Ω = {(i, i), (i, 2k), (2k, i)| ∀i ∈ [n], k ∈ [bn/2c]}. [20]
has proved that each such instance has O(2dn/2e − 2) spurious local minima, while it satisfies the
RIP property with δ2r = (1− ρ)/(1 + ρ) for some sufficiently small ρ. This implies that common
first-order methods fail with high probability for this class of problems. In our experiment, we apply
both lifted and unlifted formulations to (12) with ρ = 0.01, yielding δ2r ≈ 1. We test different
values of n and ε, using a lifted level of l = 3. We ran 10 trials each to calculate success rate. If
unspecified in the plot, we default n = 10, ε = 10−7. Figure 1 reveals a higher success rate for
the lifted formulation across different problem sizes, with smaller problems performing better as
expected (since larger problems require a higher lifting level). Success rates improve with smaller ε,
emphasizing the importance of small initialization. We employed customGD (see Appendix E), a
modified gradient descent algorithm with heuristic saddle escaping, aligning with Theorem 4.

Additionally, we examine different algorithms for (5), including customGD, vanilla GD, perturbed
GD ([41], for its ability to escape saddles), and ADAM [42]. Figure 2 suggest that ADAM is
an effective optimizer with a high success rate and rapid convergence, indicating that momentum
acceleration may not hinder implicit regularization and warrants further research. Perturbed GD
performed poorly, possibly due to the introduction of random noise disrupting rank-1 penalization,
further supporting our theory.

6.2 Shallow Neural Network Training with Quadratic Activation

It has long been known that the matrix sensing problem (2) includes the training of two-layer neural
networks (NN) with quadratic activation as a special case [12]. In summary, the output of the neural
network y ∈ Rm with respect to m inputs {di}mi=1 ∈ Rn can be expressed as

yi = 1>q(X>di) =⇒ yi = 〈did>i , XX>〉
2Code to this section can be found at ’https://github.com/anonpapersbm/implicit_bias_tensor’. Experiments

are ran on a 2021 Macbook Pro with 32G RAM without GPU acceleration
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Figure 1: Success rate of the lifted formulation versus the unlifted formulation against varying n and
ε. The algorithm of choice is CustomGD (details in Appendix E).

Figure 2: Performance of different algorithms applied to the lifted formulation (5).

where q(·) is the element-wise quadratic function and X ∈ Rn×r in (2) represents the weights of
the neural network. Therefore r is the number of hidden neurons in the network. In our experiment,
we demonstrate that under low-sample conditions, the lifted framework (5) outperforms standard
neural network training in success rate, yielding improved recovery of the true weights. We set the
hidden neurons number to be n for the standard network training, thereby comparing the existing
over-parametrization framework (recall Section 1.1, with rsearch = n) with the lifted one . We
employ the ADAM optimizer for both methods to ensure fairness. Table 2 showcases the success
rate under various problem and sample sizes. Sampling both data and true weights Z ∈ Rn×r from
an i.i.d Gaussian distribution, we calculate the observations y and attempt to recover Z using both
approaches. As the number of samples increases, so does the success rate, with the lifted approach
offering significantly better accuracy overall, even when the standard training has a 0% success rate.

Success Rate m = 20 m=30 m=40
n=8 0.9(0) 1(0.3) 0.9(0.5)

n=10 0.2(0) 0.6(0) 0.8(0)
n=12 0.1(0) 0.4(0) 0.8(0)

(a) Ground truth weight with r = 1

Success Rate m = 30 m=40 m=50
n=8 0.3(0) 0.3(0) 0.8(0)
n=10 0.3(0) 0.4(0) 0.2(0)
n=12 0(0) 0(0) 0.2(0)

(b) Ground truth weight with r = 2

Table 2: Success rate of NN training using (5) and original formulation. The number inside the
parentheses denotes the success rate of the original formulations. ε = 10−5 and l = 3.

7 Conclusion

Our study highlights the pivotal role of gradient descent in inducing implicit regularization within
tensor optimization, specifically in the context of the lifted matrix sensing framework. By trans-
forming spurious solutions into strict saddles, we reveal that GD can lead to approximate rank-1
tensors and critical points with escape directions when initialized at an adequately small scale. These
findings emphasize the importance of a suitable algorithm that can implicitly guide us towards a more
succinct representation, thereby achieving better generalization in machine learning. This work also
contributes to the usage of tensors in machine learning models, as we introduce novel concepts and
techniques to cope with the intrinsic complexities of tensors.
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A Additional Definitions and Supporting Lemmas

A.1 Notations

In this paper, σi(M) denotes the i-th largest singular value of a matrix M , and λi(M) denotes the
i-th largest eigenvalue of M . ‖v‖ denotes the Euclidean norm of a vector v, while ‖M‖F and ‖M‖2
denote the Frobenius norm and induced l2 norm of a matrixM , respectively. For a matrixM , vec(M)
is the usual vectorization operation by stacking the columns of the matrix M into a vector. For
a vector v ∈ Rn2

, mat(v) converts v to a square matrix and matS(v) converts v to a symmetric
matrix, i.e., mat(v) = M and matS(v) = (M + MT )/2, where M ∈ Rn×n is the unique matrix
satisfying v = vec(M). [n] denotes the integer set [1, . . . , n], and ◦l stands for the shorthand of
repeated cartesian product × · · ·× for l times. The symbol � denotes the kronecker product, while
⊗ denotes tensor outer product. � denotes "asymptotic to", meaning that the two terms on both sides
of this symbol have the same order of magnitude.

A.2 Critical Conditions for Unlifted Problem

We present the FOP and SOP conditions for the unlifted problem as our benchmark.

Lemma 3. The vector X̂ ∈ Rn×r is an SOP of (2) if and only if

∇f(X̂X̂>)X̂ = 0, (13)

2〈∇f(X̂X̂>), UU>〉+ [∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) ≥ 0 ∀U ∈ Rn×r (14)

with (13) being the necessary and sufficient condition for X̂ to be an FOP.

A proof to the above lemma can be found in many matrix sensing literatures, including [16, 17, 43],
etc.

A.3 Additional Definitions

Definition 4 (RIP, [2]). Given a natural number p, the linear map A : Rn×n 7→ Rm is said to satisfy
δp-RIP if there is a constant δp ∈ [0, 1) such that

(1− δp)‖M‖2F ≤ ‖A(M)‖2 ≤ (1 + δp)‖M‖2F
holds for all matrices M ∈ Rn×n satisfying rank(M) ≤ p.
Definition 5 (Symmetric Tensor). Similar to the definition of symmetric matrices, for an order-l
tensor a with the same dimensions (i.e., n1 = · · · = nl), also called a cubic tensor, it is said that the
tensor is symmetric if its entries are invariance under any permutation of their indices:

aiσ(1)···iσ(l) = ai1···il ∀σ, i1, . . . , il ∈ {1, . . . , n}
where σ ∈ Gl denotes a specific permutation and Gl is the symmetric group of permutations on
{1, . . . , l}. We denote the set of symmetric tensors as Sl(Rn).

Definition 6 (Rank of Tensors). The rank of a cubic tensor a ∈ Rn◦l is defined as

rank(a) = min{r|a =

r∑
i=1

ui ⊗ vi ⊗ · · · ⊗ wi}

for some vector ui, . . . , wi ∈ Rn. Furthermore, according to [44], if a is a symmetric tensor, then it
can be decomposed as:

a =

r∑
i=1

λiui ⊗ · · · ⊗ ui :=

r∑
i=1

λiu
⊗l
i

and the rank is conveniently defined as the number of nonzero λi’s, which is very similar to the rank
of symmetric matrices indeed. The most important concept in our paper is rank-1 tensors, and for any
tensor a, a necessary and sufficient condition for it to be rank-1 is that

a = u⊗l

for some u ∈ Rn.
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Definition 7 (Tensor Multiplication). Outer product is an operation carried out on a pair of tensors,
denoted as ⊗. The outer product of 2 tensors a and b, respectively of orders l and p, is a tensor of
order l + p, denoted as c = a⊗ b such that:

ci1...ilj1...jp = ai1...ilbj1...jp

When the 2 tensors are of the same dimension, this product is such that⊗ : Rn◦l×Rn◦p 7→ Rn◦(l+p).
Henceforth, we use the shorthand notation

a⊗ · · · ⊗ a︸ ︷︷ ︸
l times

:= a⊗l

We also define an inner product of two tensors. The mode-q inner product between the 2 aforemen-
tioned tensors having the same q-th dimension is denoted as 〈a,b〉q. Without loss of generality,
assume that q = 1 and

[〈a,b〉q]i2...ilj2...jp =

nq∑
α=1

aαi2...ilbαj2...jp

Note that when we write 〈·, ·〉q , we count the q-th dimension of the first entry. Indeed, this definition
of inner product can also be trivially extended to multi-mode inner products by just summing over all
modes, denoted as 〈a,b〉q,...,s.

A.4 Technical Lemmas

Lemma 4 (Section 10.2 [45]). For four arbitrary matrices A,B,C,D of compatible dimensions, it
holds that

〈A⊗B,C ⊗D〉2,4 = AC ⊗BD (15)

Lemma 5 ([46]). For any SOP X̂ of (2), define G as G := −λmin(∇f(X̂X̂>)), and Ls be the RSS
constant. Then it holds that

G ≤ λr(X̂X̂>)Ls

where r is the search rank of (2).

Lemma 6. Given an FOP X̂ of (2), it holds that

λr(X̂X̂
>) <

√
2Ls
rαs
‖M∗‖F (16)

Proof of Lemma 6. Lemma 6 of [17] states that given an arbitrary constant λ and matrix X ∈ Rn×r,
one can write

‖XX>‖2F ≥ max

{
2Ls
αs
‖M∗‖2F , (

2λ
√
r

αs
)4/3

}
=⇒ ‖∇h(X)‖F ≥ λ

A simple negation to both sides gives

‖∇h(X)‖F < λ =⇒ ‖XX>‖2F < max{2Ls
αs
‖M∗‖2F , (

2λ
√
r

αs
)4/3}

If we set X = X̂ , then left-hand side of the above inequality is automatically satisfied for small
values of λ since ‖∇h(X̂)‖F = 0, and thus we conclude that

‖X̂X̂>‖2F <
2Ls
αs
‖M∗‖2F

since ( 2λ
√
r

αs
)4/3 can be made arbitrarily small. Therefore,

‖X̂X̂>‖2F ≥ rλr(X̂X̂>)2 =⇒ λr(X̂X̂
>) <

√
2Ls
rαs
‖M∗‖F

as X̂X̂> can have at most r eigenvalues due to its factorized form.
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B Additional Details for Lifted Formulation of General r

We analyze (5) and generalize the results of [21] to r > 1. We start with the characterization of FOPs
and SOPs of (5).
Lemma 7. The tensor ŵ ∈ Rnr◦l is an SOP of (5) if and only if

〈∇f l(〈P(ŵ),P(ŵ)〉2∗[l]),P(ŵ)〉2∗[l] = 0, (17a)

2〈∇f l(〈P(ŵ),P(ŵ)〉2∗[l]), 〈P(∆),P(∆)〉2∗[l]+
‖〈A⊗l, 〈P(ŵ),P(∆)〉2∗[l] + 〈P(∆),P(ŵ)〉2∗[l]〉‖2F ≥ 0 ∀∆ ∈ Rnr◦l

(17b)

with (17b) being a necessary and sufficient condition for ŵ to be a FOP.

Proof of Lemma 7. We have

∇f l(M) = 〈〈A⊗l,M−M(vec(Z)⊗l)〉,A⊗l〉1,4,...,3l−2 (18)

where the new mapM : Rnr◦l 7→ Rn◦2l is defined as

M(w) = 〈P(w),P(w)〉2∗[l],

and its total derivative at w is the linear map DwM : Rnr◦l 7→ Rn◦2l given below:

DwM(v) = 〈P(v),P(w)〉2∗[l] + 〈P(w),P(v)〉2∗[l]. (19)

Combining (18) and (19) gives that

Dwh
l(v) = 〈A⊗l, DwM(v)〉>〈A⊗l,M(w)−M(vec(Z)⊗l)〉 (20)

The sensing matrices Ak ∀k ∈ [m] are assumed to be symmetric, and therefore 〈A⊗l, DwM(v)〉 =
2〈A⊗l, 〈P(v),P(w)〉2∗[l]〉.

Therefore, since the first-order optimality condition for (5) is that Dwh
l(v) = 0 ∀v ∈ Rnr◦l, it can

be equivalently written as

〈〈A⊗l,P(w)〉2∗[l], 〈A⊗l,M(w)−M(vec(Z)⊗l)〉〉1,3,...,2l−1 = 0, (21)

and left-hand side of the above equation yields (17a) after rearrangements.

For the second-order optimality condition, one can directly take the derivative of Dwh
l(v), but there

is an easier way since we are only concerned the expression of its quadratic form evaluated at some
tensor ∆ ∈ Rnr◦l. For a brief moment, assume that we aim to optimize over X ∈ R[n×r]◦l, for which

∇hl(X) = 2〈∇f l(〈X,X〉2∗[l]),X〉2∗[l] ∈ R[n×r]◦l

Therefore, if we instead take the derivate of g(P(w)) with respect to w, we can simply use the chain
rule and arrive at

∇wh
l(P(w)) = 〈∇hl(X),P⊗l〉1,2,4,5,...,3l−1,3l (22)

Hence, if we take the derivate of∇hl and evaluate it at X in the direction of U ∈ R[n×r]◦l, we obtain
that

DX∇hl(U) = 2〈∇f l(〈X,X〉2∗[l]),U〉2∗[l] + 〈〈A⊗l, 〈X,U〉2∗[l] + 〈U,X〉2∗[l]〉, 〈A⊗l,w〉2,5,...,3l−1〉
+ 〈〈A⊗l, 〈X,U〉2∗[l] + 〈U,X〉2∗[l]〉, 〈A⊗l,w〉3,6,...,3l〉

Combined with (22), we conclude that

[∇2
wh

l(P(w))](v,v) = 2〈∇f l(M(w)),M(v)〉+ 〈〈A⊗l, DwM(v)〉, 〈A⊗l, DwM(v)〉〉
= 2〈∇f l(M(w)),M(v)〉+ ‖〈A⊗l, DwM(v)〉‖2F

which yields (17b) directly.

Now, we turn to showcasing the relationship between the FOPs of (5) and those of (2), which also
have a one-to-one correspondence in the symmetric rank-1 regime. This is the reason why it is
necessary to introduce (5) despite the extra complication, as rank-1 components tensors in R[n×r]◦l

are not lifted versions of X ∈ Rn×r.
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Theorem 3. For the lifted formulation (5), the first-order condition ∇hl(ŵ) = 0 holds for a
symmetric rank-1 tensor ŵ if and only if

ŵ = vec(X̂)⊗l

where X̂ ∈ Rn×r is an FOP of (2).

Proof of Theorem 3. When ŵ = vec(X̂)⊗l, Lemma A.4 and (17a) together imply that

〈∇f l(〈X̂⊗l, X̂⊗l〉2∗[l]), X̂⊗l〉2∗[l] = (∇f(X̂X̂>)X̂)⊗l = 0 (23)

which is equivalent to
∇f(X̂X̂>)X̂ = 0,

which is exactly (13).

Theorem 3 establishes a robust connection between the first-order critical points of the lifted formula-
tion and those of the unlifted formulation. This implies that when first-order methods approach a
critical point in (5), valuable information about an FOP of (2) can also be readily extracted. However,
the primary challenge in optimizing (2) stems from spurious solutions, which cannot be escaped
by first or even second-order algorithms. Consequently, it becomes crucial to examine whether the
Hessians of the FOPs of (5), especially those that correspond to the spurious solutions of (2), exhibit
any unique properties. As it turns out, the non-global FOPs of (5) display some highly favorable
characteristics: they no longer constitute second-order critical points of (5) and are transformed into
strict saddles when the parametrization level l is sufficiently large.

To motivate our analysis of conversion from spurious solutions to strict saddle points, we first offer a
closer analysis to the SOPs of the unlifted problem (2), which also serves as the key intuition into our
main results in this section.

The main observation is that, for a spurious SOP X̂ and any ground truth Z with X̂X̂> 6= ZZ>,
although they all obey conditions (13) and (14), they still have intrinsic differences that can be
amplified via over-parametrization. To illustrate this phenomenon in more detail, we will introduce
the following Lemma:

Lemma 8. For an arbitrary FOP X̂ ∈ Rn×r of (2) satisfying the (αs, r)-RSC property, the following
inequality holds:

λmin(∇f(X̂X̂>)) ≤ −αs
‖X̂X̂> −M∗‖2F

2 tr(M∗)
≤ 0 (24)

Proof for Lemma 8. According to [17], ∇f(M) can be assumed to be symmetric without loss of
generality. Hence, one can select u ∈ Rn such that u>∇f(x̂x̂>)u = λmin(∇f(x̂x̂>)). Then via the
definition of RSC we have

f(M∗) ≥ f(X̂X̂>) + 〈∇f(X̂X̂>),M∗ − X̂X̂>〉+
αs
2
‖X̂X̂> −M∗‖2F .

Given that X̂ is also an FOP, we have that

〈∇f(X̂X̂>), X̂X̂>〉 = 0

according to (13) and since f(X̂X̂>)− f(M∗) ≥ 0, one can write that

〈∇f(X̂X̂>),M∗〉 ≤ −αs
2
‖x̂x̂> −M∗‖2F

after rearrangements. Furthermore, since both ∇f(X̂X̂>) and M∗ are assumed to be positive
semidefinite for the above-mentioned reasons, we have that

〈∇f(X̂X̂>),M∗〉 ≥ λmin(∇f(X̂X̂>)) tr(M∗)

which implies that

λmin(∇f(X̂X̂>)) ≤ −αs
‖X̂X̂> −M∗‖2F

2 tr(M∗)
≤ 0 (25)

This completes the proof.
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Now let us recall (14), which can be stated equivalently as

λmin(∇f(X̂X̂>)) ≥ −[∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) ∀U
By using the (Ls, r)-RSS property and the assumption that the sensing matrices are symmetric, we
can further lower-bound the right-hand side of the above inequality as

−[∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) ≥ −4[∇2f(X̂X̂>)](X̂U>) ≥ −4Ls‖X̂U>‖2F

Therefore, it is easy to see that a sufficient condition for the spurious SOPs to disappear is

αs
‖X̂X̂> −M∗‖2F

2 tr(M∗)
≥ 4Ls‖X̂U>‖2F ∀U (26)

which means that the Ls and αs parameters should be benign, and this essentially constitutes the
main proof strategy in the existing literature showing in-existence of spurious solutions under benign
RIP or RSS/RSC conditions [14, 17, 47, 15, 46].

Therefore, it is natural to ask, in the case when Ls and αs do not satisfy (26), whether one can
systematically over-parametrize the problem so that the LHS of (26) eventually becomes bigger than
the RHS. We know that if we just raise both the RHS and LHS to arbitrary powers, the sign of the
inequality will not flip. Therefore, the key insight is that if we keep the constant 4 unchanged, and
lift the other terms to arbitrary powers, we can eventually satisfy (14). In general terms, we take the
following steps in order to establish a strong result regarding the conversion of spurious solutions to
strict saddle points:

1. Proving that 〈∇f l(〈P(ŵ),P(ŵ)〉,∆⊗∆〉 ≥ |λmin(∇f(X̂X̂>))|l for some appropriately
chosen point ∆ ∈ Rnr◦l.

2. Proving that ‖〈A⊗l, 〈P(w),P(∆)〉2∗[l] + 〈P(∆),P(w)〉2∗[l]〉‖2F ≤ 4Ls‖X̂U>‖2lF for
some appropriately chosen points ∆ ∈ Rnr◦l and U ∈ Rn×r

3. Finding the smallest l that converts the spurious solution to strict saddle point, under mild
technical conditions.

Now we turn to the main result of the general-rank scenario, which concerns the conversion of
spurious solutions to strict saddle points. We present the formal results below.

Theorem 4. Consider an SOP X̂ ∈ Rn×r of (2) of general rank r < n, such that X̂X̂> 6= M∗, and
assume that (2) satisfies the RSC and RSS conditions. Then ŵ = vec(X̂)⊗l is a strict saddle of (5)
with a rank-1 symmetric escape direction if X̂ satisfies the inequality

‖M∗ − X̂X̂>‖2F ≥
Ls
αs
λr(X̂X̂

>) tr(M∗) (27)

and l is odd and is large enough so that

l >
1

1− log2(2β)
(28)

where β is defined as

β :=
Ls tr(M∗)λr(X̂X̂

>)

αs‖M∗ − X̂X̂>‖2F
.

Here, Ls and αs are the respective RSS and RSC constants of (2).

Proof of Theorem 4. By Lemma 8, we select u ∈ Rn such that u>∇f(X̂X̂>)u = λmin(∇f(X̂X̂>))

with λmin(∇f(X̂X̂>)) ≤ 0 .

Now define G := −λmin(∇f(X̂X̂>)) ≥ 0. If we label

C1 := 〈∇f(X̂X̂>), UU>〉, C2 := [∇2f(X̂X̂>)](X̂U>, X̂U>)

Then we have that C1 = −G. Also, since the sensing matrices Aa can be assumed be to symmetric,
we have that

[∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) = 4[∇2f(X̂X̂>)](X̂U>, X̂U>).
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Additionally we choose q ∈ Rr to be the r-th singular value of X̂ , with

‖X̂q‖2 = σr(X̂), ‖q‖2 = 1

and define U ∈ Rn×r = uq>. Subsequently, the RSS condition can be used to show that

[∇2f(X̂X̂>)](X̂U> + UX̂>, X̂U> + UX̂>) ≤ Ls‖X̂U> + UX̂>‖2F
= Ls‖u(X̂q)> + (X̂q)u>‖2F = 2Ls‖X̂q‖2F + 2Ls(q

>(X̂>u))2 = 2Lsλr(X̂X̂
>)

since X̂>u = 0 according to the first-order condition (13). Therefore,

C2 ≤
1

2
Lsλr(X̂X̂

>)

Now, if we choose ∆ = vec(U)⊗l for the aforementioned U ∈ Rn×r, the LHS of (17b) can be
expressed as:

LHS = 2(〈A, X̂X̂>〉>2,3〈A, uu>〉2,3)l − 2(〈A,M∗〉>2,3〈A, uu>〉2,3)l + 4(‖〈A, X̂U>〉2,3‖22)l

≤ 2(λmin(∇f(X̂X̂>)))l + 4Cl2

= 2Cl1 + 4Cl2
(29)

where the inequality follows from:

an − bn ≤ (a− b)n, ∀b ≥ a ≥ 0

Here, since a− b = C1 ≤ 0, the above inequality can be used. As a result,

LHS of (17b) ≤ −2Gl︸ ︷︷ ︸
Part 1

+
2

2l−1
Llsλr(X̂X̂

>)l︸ ︷︷ ︸
Part 2

We know since G ≥ 0, Part 1 is always negative assuming l is odd, and Part 2 is always positive.
Therefore, it suffices to find an order l such that

Gl > (1/2l−1)Llsλr(X̂X̂
>)l (30)

To derive a sufficient condition for (30), we first need a lower bound on G, and Lemma (8) conve-
niently provides this bound, giving that

G ≥ αs
2 tr(M∗)

‖M∗ − X̂X̂>‖2F (31)

Therefore, if (
αs

2 tr(M∗)
‖M∗ − X̂X̂>‖2F

)l
> (1/2l−1)Llsλr(X̂X̂

>)l,

we can conclude that (30) holds, which implies that the LHS of (17b) is negative, directly proving that
X̂⊗l is not an SOP anymore. Elementary manipulations of the above equation give that a sufficient
condition is

‖M∗ − X̂X̂>‖2F > 21/lLs
αs
λr(X̂X̂

>) tr(M∗) (32)

We now consider (27), which means that

λr(X̂X̂
>) ≤ αs

Ls tr(M∗)
‖M∗ − X̂X̂>‖2F (33)

Subsequently, define a constant γ such that

Lsλr(X̂X̂
>) = γ(

αs
2 tr(M∗)

‖M∗ − X̂X̂>‖2F )

Then, according to Lemma 5 and (31), we can conclude that γ ≥ 1. Moreover, (33) also means that
γ < 2. With this new definition, the sufficient condition (32) becomes

1 >
γ

2(l−1)/l
(34)
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Since we already know that 1 ≤ γ < 2, there always exists a large enough l such that (34) holds,
which in turn implies that LHS of (17b) is negative, proving that vec(X̂)⊗l is a saddle point with the
escape direction vec(U)⊗l, proving the claim.

Next, we aim to study how large l needs to be in order for (34) to hold. Again, we know that

γ =
2Ls tr(M∗)λr(X̂X̂

>)

αs‖M∗ − X̂X̂>‖2F
:= 2β

and that β ≤ 1 due to assumption (27). Therefore, for (34) to hold true, it is enough to have

2(l−1)/l > 2β =⇒ l − 1

l
> log2(2β) =⇒ l >

1

1− log2(2β)

B.1 Other Considerations of Lifted Landscape

In the previous sections, we have shown that by lifting the optimization problem (2) into tensor spaces,
we could convert spurious local solutions into strict saddle points. However, it is also important that
we could distinguish the true ground truth solutions Z ∈ Rn×r with ZZ>. = M∗ from the spurious
ones. This requires that the true solutions Z will remain SOPs after lifting, which we indeed prove in
the following theorem:

Theorem 5. Assume that Z ∈ Rn×r is a ground truth solution of (2) such that ZZ> = M∗. Then
vec(Z)⊗l remains an SOP of (5) regardless of the parametrization level l, and without the need for
(2) to satisfy the RSC or RSS conditions.

Proof of Theorem 5. Let us start with the first-order optimality condition. Consider the linear map in
the proof of Lemma 7M : Rnr◦l 7→ Rn◦2l

M(w) = 〈P(w),P(w)〉2∗[l],

Again, it is apparent that

∇f l(M) = 〈〈A⊗l,M−M(vec(Z)⊗l)〉,A⊗l〉1,4,...,3l−2

Therefore, at the point M =M(vec(Z)⊗l), we know that ∇f l(M(vec(Z)⊗l)) = 0. Consequently,
the LHS of (17a) is equal to zero since it is a product between∇f l(M(vec(Z)⊗l)) and P(vec(Z)⊗l).

Next, we turn to the second-order optimality condition. Again, recall from the proof of Lemma 7 that

LHS of (17b) = 2〈∇f l(M(w)),M(∆)〉︸ ︷︷ ︸
Part 1

+ ‖〈A⊗l, DwM(∆)〉‖2F︸ ︷︷ ︸
Part 2

By the above arguments, we have∇f l(M(w)) = 0 when w = vec(Z)⊗l, meaning that Part 1 equals
to zero. This implies that

LHS of (17b) = ‖〈A⊗l, DwM(∆)〉‖2F ≥ 0, ∀∆

regardless of the values of A or w = vec(Z)⊗l.

Next, it is important to analyze the main results obtained in Theorem 4 under the lens of some other
existing characterizations of the loss landscape of (2). According to Theorem 4, over-parametrization
or lifting proves to be highly beneficial when dealing with spurious solutions, represented by X̂ ,
that significantly deviate from the actual ground truth. The theorem implies that as the distance
between X̂ and the ground truth increases, a smaller value of l is necessary for vec(X̂)⊗l to evolve
into a saddle point, as alluded to in (28). This concept is consistent with previous studies, which
maintain that the area surrounding M∗ exhibits a favorable optimization landscape, characterized by
an absence of deceptive local solutions in a specified zone around M∗. A commonly cited illustration
of this assertion is provided below.
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Theorem 6 (Theorem 3 [48]). If X̂ is an SOP of (2) and

‖X̂X̂> −M∗‖F ≤
4Lsαs

(Ls + αs)2
λr(M

∗), (35)

then
X̂X̂> = M∗

This means that any spurious solution of (2) is reasonably far away from the ground truth solution
M∗. Coupled with the fact that lifting the problem into higher-dimensional tensor spaces can convert
spurious solutions far away from M∗ into strict saddles points, we can ascertain that by setting the
RHS of (35) to be greater or equal to the RHS of (27), all spurious solutions will be converted into
strict saddle points via lifting. We make this key observation concrete in the following theorem.

Theorem 7. Assume that X̂ ∈ Rn×r is a spurious solution of (2), and that (2) satisfies the RSC and
RSS assumptions with the αs and Ls constants, respectively. Then vec(X̂)⊗l is a strict saddle point
of (5) for an odd l satisfying (28) if

‖M∗‖F ≤
1

τ
√
r

2
√

2α
5/2
s

(Ls + αs)2
√
Ls

(36)

where τ is the condition number of M∗.

Proof of Theorem 7. By using Lemma 6, we know that

RHS of (27) ≤

√
2L3

s

rα3
s

‖M∗‖F tr(M∗)

Hence, it is enough to make the RHS of the above inequality to be less than that of (35), meaning that√
2L3

s

rα3
s

‖M∗‖F tr(M∗) ≤ 4Lsαs
(Ls + αs)2

λr(M
∗) =⇒ ‖M∗‖F

tr(M∗)

λr(M∗)
≤ 2

√
2rα

5/2
s

(Ls + αs)2
√
Ls

Then, acknowledging that tr(M∗) ≤ rτλr(M∗) completes the proof.

C Additional Details for Implicit Bias of GD in Tensor Space

C.1 More Tensor Algebra

Definition 8. Given a cubic tensor w ∈ Rn◦l, its spectral norm ‖ · ‖S and nuclear norm ‖ · ‖∗ are
defined respectively as

‖w‖∗ = inf


rm∑
j=1

|λj | : w =

rm∑
j=1

λjw
⊗l
j , ‖wj‖2 = 1, wj ∈ Rn


‖w‖S = sup

{
|〈w, u⊗l〉| ‖u‖2 = 1, u ∈ Rn

}
From the definition, it also follows that

‖w‖S ≤ ‖w‖∗
The above definitions are similar to those for their matrix counterparts. However, unlike the spectral
norm of matrices, the spectral norm of tensors are not tensor norms, namely that they do not obey

‖〈w,v〉‖S ≤ ‖w‖S‖v‖S
in general. Conversely, the nuclear norm is a valid tensor norm, and we have the following property:
Lemma 9 (Theorem 2.1, 3.2 [39]). For tensors w and v of appropriate dimensions (if doing inner
product, the dimensions along which the multiplication is performed must have matching size), we
have

‖〈w,v〉‖S ≤ ‖w‖S‖v‖∗
‖〈w,v〉‖∗ ≤ ‖w‖∗‖v‖∗
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Moreover, they have a dual norm relationship:
Lemma 10 (Lemma 21 [49]). The spectral norm ‖ · ‖S is the dual norm to the nuclear norm ‖ · ‖∗,
namely given an arbitrary tensor w, we have that

‖w‖S = sup
‖v‖∗≤1

|〈w,v〉|

with v having the same dimensions as w.

Next, we introduce the notion of eigenvalues for tensors. There are many related definitions, like
outlined in [40]. However, we introduce a novel variational characterization of eigenvalues that
resembles the Courant-Fisher minimax definition for eigenvalues of matrices. Note this is a new
definition that is fist introduced in this paper, and may be of independent interest outside of the current
scope.
Definition 9 (Variational Eigenvalue of Tensors). For a given tensor w ∈ Rn◦l, we define its kth
variational eigenvalue (v-Eigenvalue) λvk(w) as

λvk(w) := max
S

dim(S)=k

min
u∈S

|〈w,u〉|
‖u‖2F

, k ∈ [n]

where S is a subspace of Rn◦l that is spanned by a set of orthogonal, symmetric, rank-1 tensors. Its
dimension denotes the number of orthogonal tensors that span this space.

It is apparent from the definition that ‖w‖S = λv1(w). Note that our definition of v-Eigenvalues
of tensors can only define n eigenvalues at most, which is not the maximum amount of H- or Z-
Eigenvalues a tensor can have [40], and it is well known that even with symmetric tensors, its rank
can go well beyond n [50]. We also note that this definition exactly coincides with the definition of
Hermitian tensor eigenvalues (introduced here [51]) when constrained to Hermitian tensors [52]. We
also conjecture that this definition coincides with the top-n Z-Eigenvalues for even-order symmetric
real tensors [40], but it is an open question for now.

Using the definition of v-Eigenvalues, we can also obtain an equivalent characterization, just like
the Courant-Fisher definition for matrix eigenvalues, which helps us in proving a tensor version of
Weyl’s inequality:
Proposition 3. For an integer k in [1, . . . , n], the kth variational eigenvalue (v-Eigenvalue) λvk(w)
of a tensor w satisfies:

λvk(w) = min
T

dim(T )=n−k+1

max
u∈T

|〈w,u〉|
‖u‖2F

= max
S

dim(S)=k

min
u∈S

|〈w,u〉|
‖u‖2F

Proof of Proposition 3. We prove the proposition by contradiction. Assume that the two formulations
claimed to be identical in Proposition 3 are not the same. We further assume that S is spanned
by symmetric, rank-1 tensors {u1, . . . ,uk}, and that T is spanned by symmetric, rank-1 tensors
{u−(n−k+1), . . . ,u−1}, meaning that

〈w,uk〉 6= 〈w,u−(n−k+1)〉

assuming that uk and u−(n−k+1) are the inner argmin and argmax of their respective formulations
with norm 1. Since they have to be rank-1 tensors (if not we can decrease the proportion of orthogonal
elements with higher or lower |〈w,u〉| values), it is possible to denote

uk = u⊗lk , u−(n−k+1) = u⊗l−(n−k+1) where uk, u−(n−k+1) ∈ Rn

We also know that uk and u−(n−k+1) are linearly independent, as otherwise uk and u−(n−k+1) will
have the same inner product with w. Thus, assume

uk = ξ1u−(n−k+1) + ξ2u
⊥
−(n−k+1), ξ2 6= 0.

It follows that

uk = ξl1u
⊗l
−(n−k+1) + ξl2(u⊥−(n−k+1))

⊗l + . . . . . .︸ ︷︷ ︸
other non-symmetric terms
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Denote (u⊥−(n−k+1))
⊗l := uk+1. Now, it follows from definition that

uk+1 ⊥ {u1, . . . ,uk−1}
and also

uk+1 /∈ span{u−(n−k), . . . ,u−1}
as otherwise the outer maximization formulation affecting the choice of uk will make ξ2 = 0,
contradicting our claim. By definition we have span{u1, . . . ,uk}

⋂
span{u−(n−k), . . . ,u−1} =

{∅}.
In summary we have that uk+1 ⊥ u−(n−k+1), {u1, . . . ,uk−1}, {u−(n−k), . . . ,u−1}, meaning that
we have obtained n+ 1 symmetric rank-1 and n-dimensional tensors all orthogonal to each other,
which is apparently not possible, thus refuting our initial claim.

With this new definition equipped, we proceed to show a tensor version of Weyl’s inequality, which is
key in our proof as promised.
Lemma 11 (Tensor Weyl’s). Consider two tensors w and v of the same dimension. It holds that

λvk(w) + λv1(v) ≥ λvk(w + v) ≥ λvk(w)− λv1(v) (37)

The proof of Lemma 11 is highly similar to that of Theorem 2 in [52], only substituting for our new
definition of v-Eigenvalues, thus omitted for simplicity.

C.2 Main Results and Their Proofs

Note that in this section some tensor inner products will be written as if they were matrices for clarity
of writing, and some subscripts for inner-products will be dropped when obvious. If two tensors in
Rnr◦2l are multiplied together, then the even dimensions of the first tensor will be inner-producted
with the odd dimensions of the second tensor. When a tensor in Rnr◦2l multiplies with a tensor in
Rnr◦l, then the even dimensions of the first tensor will be inner-producted with all the dimensions of
the second tensor.

We start with the proof to Lemma 1.

Proof of Lemma 1. We proceed with the proof by induction. First, assume that w0 = x⊗l0 for some
x0 ∈ Rnr. One can write

∇hl(w0) = 〈〈(Ir �1,2 A)⊗l,w0〉2∗[l], 〈A⊗l,M(w0)−M(vec(Z)⊗l)〉〉1,3,...,2l−1 (38)

whereM(·) is defined per proof of Lemma 7. The difference between this formulation and (21) is
that we have replaced 〈A⊗l,P(w0)〉2∗[l] with 〈(Ir �1,2 A)⊗l,w0〉2∗[l], which are equivalent, just
with the second tensor having the dimensions nr,m, . . . , nr,m so that ∇hl(w0) has the dimensions
nr, . . . , nr. Note that � denotes the usual kronecker product, which can be thought of a reshaped
version of tensor outer product. �1,2 denotes the kronecker product only happening with respect to
the first 2 dimensions of A. From now on, we denote Ar := Ir �1,2 A.

Now, according to the above formulation and Lemma A.4, we have

∇hl(w0) =
(
〈Ar, 〈A,mat(x0) mat(x0)> −M∗〉〉3,6,...,3l x0

)⊗l
:= (〈A∗rA,mat(x0) mat(x0)> −M∗〉 x0)⊗l

(39)

where
(Al

r)
∗Al := 〈(Ar)

⊗l,A⊗l〉3,6,...,3l ∈ R[nr×nr×n×n]◦l (40)

Now, 〈A∗rA,mat(x0) mat(x0)> − M∗〉 is an nr × nr matrix, so the above tensor is simply a
vector outer product, being symmetric by definition. Consequently, w1 = w0 − η∇hl(w0) is still
symmetric, since the addition of symmetric tensors maintains symmetric property. This completes
the proof of the initial step.

Then, we proceed to show the induction step. Assume that wt−1 is symmetric, meaning that

wt−1 =

rm∑
j=1

λj(x
t−1
j )⊗l, xt−1

j ∈ Rnr
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where rm is the symmetric rank of wt−1. This means that

∇hl(wt−1) =

rm,rm,rm∑
j1,j2,j3

λj1λj2λj3(〈A∗rA,mat(xt−1
j1

) mat(xt−1
j2

)>〉xt−1
j3

)⊗l−

rm∑
j3

λj3(〈A∗rA,M∗〉xt−1
j3

)⊗l

which again is a weighted sum of rank-1 symmetric tensors, thus being symmetric. This shows that
wt = wt−1 − η∇hl(wt−1) is also symmetric, concluding the induction step, thereby proving the
claim.

Next, we show the breakdown of tensors along the GD trajectory
Lemma 12. The GD trajectory of (5) {wt}∞t=0 admits the following breakdown for an arbitrary t:

wt+1 = 〈Zt,w0〉 −Et := w̃t −Et (41)

where

Zt := (I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t

Et :=

t∑
i=1

(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t−iÊi

Êi := η〈〈(Al
r)
∗Al, 〈P(wi−1),P(wi−1)〉2∗[l]〉,wi−1〉2∗[l]

and where (Al
r)
∗Al := 〈(Ar)

⊗l,A⊗l〉3,6,...,3l ∈ R[nr×nr×n×n]◦l.

Proof of Lemma 12. For this proof, we will proceed by induction. For t = 1, we have that

w1 = (I + η〈(Al
r)
∗Al, (M∗)⊗l − 〈P(w0),P(w0)〉〉)w0

= (I + η〈(Al
r)
∗Al, (M∗)⊗l〉)w0 − η〈(Al

r)
∗Al, 〈P(w0),P(w0)〉〉w0

= 〈Z1,w0〉 −E1

Then, we move on to the induction step, while first assuming that it holds for some t. One can write

wt+1 = (I + η〈(Al
r)
∗Al, (M∗)⊗l − 〈P(wt),P(wt)〉〉)wt

= (I + η〈(Al
r)
∗Al, (M∗)⊗l〉)wt − η〈(Al

r)
∗Al, 〈P(wt),P(wt)〉〉wt

= (I + η〈(Al
r)
∗Al, (M∗)⊗l〉)wt − Êt+1

= (I + η〈(Al
r)
∗Al, (M∗)⊗l〉)

(
w̃t −

t∑
i=1

(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t−iÊi

)
− Êt+1

= w̃t+1 −
t∑
i=1

(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t+1−iÊi − Êt+1

= w̃t+1 −
t+1∑
i=1

(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t+1−iÊi

= w̃t+1 −Et

Following the second step in the main outline, we aim to bound the spectral norm of Et, via the next
lemma.
Lemma 13. Given a tensor Et defined in Lemma 12, assume that w0 = εx⊗l0 , where ε ∈ R is the
initialization scale. For every t ≤ ts,

‖Et‖S ≤
8

rlUσ1(U)l
ε3(nLs)

l/2(1 + η̃σ1(U)l)3t‖x⊗l0 ‖3∗ (42)
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with

ts = b
ln

(
σl1(U)rlU

8rlL
l/2
s ‖x⊗l0 ‖3∗

|x>0 v1|
l

nl/2

)
− 2 ln(ε)

2 ln(1 + η̃σl1(U))
c (43)

where U = 〈A∗rA,M∗〉 ∈ Rnr×nr, rU being the rank of U , and η̃ = rlUη. σ1(U) denotes the
largest singular value of U , and v1 being its associated singular vector.

Proof of Lemma 13. From Lemma 9 and the definition in Lemma 12, it is apparent that

‖Et‖S ≤
t∑
i=1

‖(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t−i‖S‖Êi‖∗ (44)

We proceed to derive upper bounds on the norm terms separately, and then combine them together
later. We first deal with ‖Êi‖∗. By Lemma 9, we have that

‖Êi‖∗ ≤ η‖〈(Al
r)
∗Al, 〈P(wi−1),P(wi−1)〉〉‖∗‖wi−1‖∗

Now, assume that wi−1 admits the following breakdown

wi−1 =

ri−1∑
j=1

λj(x
i−1
j )⊗l, xi−1

j ∈ Rnr, ‖xi−1
j ‖2 = 1 (45)

where ‖wi−1‖∗ =
∑
j |λj |. Therefore,

〈P(wi−1),P(wi−1)〉 =

ri−1,ri−1∑
j1,j2

λj1λj2〈P((xi−1
j1

)⊗l),P((xi−1
j2

)⊗l)〉,

leading to

〈(Al
r)
∗Al, 〈P(wi−1),P(wi−1)〉〉 =

ri−1,ri−1∑
j1,j2

λj1λj2〈(Al
r)
∗Al, 〈P((xi−1

j1
)⊗l),P((xi−1

j2
)⊗l)〉〉.

For given indices j1, j2 index, it follows from Lemma A.4 that

〈(Al
r)
∗Al, 〈P((xi−1

j1
)⊗l),P((xi−1

j2
)⊗l)〉〉 = (〈A∗rA,mat(xi−1

j1
) mat(xi−1

j2
)>〉)⊗l

Now, according to the definition of Ar := Ir �1,2 A, where � denotes the kronecker product (a
reshaped tensor vector product, where the subscript denotes the dimension with which kronecker
product is applied with respect to A), we know that

〈A∗rA,mat(xi−1
j1

) mat(xi−1
j2

)>〉 = Ir � 〈A∗A,mat(xi−1
j1

) mat(xi−1
j2

)>〉
Hence, the eigenvalues of the LHS are just r copies of that of the RHS [45]. This further implies

‖〈A∗rA,mat(xi−1
j1

) mat(xi−1
j2

)>〉‖∗ = r‖〈A∗A,mat(xi−1
j1

) mat(xi−1
j2

)>〉‖∗
≤ r
√
n‖〈A∗A,mat(xi−1

j1
) mat(xi−1

j2
)>〉‖F

≤ r
√
nLs‖mat(xi−1

j1
) mat(xi−1

j2
)>‖F

= r
√
nLs

where the second last inequality follows from the RSS property, and the last equality follows from
(45). Next, we apply Lemma 9 again with

‖〈(Al
r)
∗Al, 〈P((xi−1

j1
)⊗l),P((xi−1

j2
)⊗l)‖∗ ≤ (‖〈A∗rA,mat(xi−1

j1
) mat(xi−1

j2
)>〉‖∗)l ≤ rl(nLs)l/2

which leads to

‖〈(Al
r)
∗Al, 〈P(wi−1),P(wi−1)〉〉‖∗

≤
ri−1,ri−1∑
j1,j2

|λj1 ||λj2 |‖〈(Al
r)
∗Al, 〈P((xi−1

j1
)⊗l),P((xi−1

j2
)⊗l)‖∗

≤rl(nLs)l/2
ri−1,ri−1∑
j1,j2

|λj1 ||λj2 | = rl(nLs)
l/2‖wi−1‖2∗
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This directly gives
‖Êi‖∗ ≤ η(r2nLs)

l/2‖wi−1‖3∗
Since our goal is to bound ‖Et‖S , we focus on ‖(I + η〈(Al

r)
∗Al, (M∗)⊗l〉)t−i‖S . Using binomial

formula, we obtain that

(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t−i =

t−i∑
k=0

(
t− i
k

)
ηk(〈(Al

r)
∗Al, (M∗)⊗l〉)k

where 〈(Al
r)
∗Al, (M∗)⊗l〉 ∈ Rnr◦2l, and (·)k just denotes repeated multiplications along the

even dimensions of the tensor, as explained in the disclaimer. To upper-bound the spectral
norm of (I + η〈(Al

r)
∗Al, (M∗)⊗l〉)t−i, it is necessary to upper-bound the spectral norm of

(〈(Al
r)
∗Al, (M∗)⊗l〉)k. To do so, we use Lemma 10 to reformulate

‖〈(Al
r)
∗Al, (M∗)⊗l〉k‖S = sup

‖v‖∗≤1

|〈(Al
r)
∗Al, (M∗)⊗l〉k,v〉|

Assume that the above supremum is achieved at v∗, with nuclear norm decomposition of

v∗ =

rv∑
jv=1

λjvxjv,1 ⊗ · · · ⊗ xjv,2l, xjv,p ∈ Rnr, ‖xjv,p‖2 = 1 ∀p ∈ [2l]

with
∑
jv
|λjv | = ‖v∗‖∗ ≤ 1. Note that this decomposition is due to the fact that v is not necessarily

symmetric. Again, by Lemma A.4,

〈(Al
r)
∗Al, (M∗)⊗l〉k =

[
(〈A∗rA,M∗〉)k

]⊗l
,

directly leading to

‖〈(Al
r)
∗Al, (M∗)⊗l〉k‖S =

rv∑
jv=1

|λjv
l−1∏
p=0

x>jv,p∗2〈A
∗
rA,M

∗〉kxjv,p∗2+1|

Since
x>jv,p∗2〈A

∗
rA,M

∗〉kxjv,p∗2+1 ≤ σk1 (U)

this means that

‖〈(Al
r)
∗Al, (M∗)⊗l〉k‖S = (σk1 (U))l

rv∑
jv=1

|λjv | ≤ σkl1 (U)

Going back to (I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t−i,

‖(I + η〈(Al
r)
∗Al, (M∗)⊗l〉)t−i‖S ≤

t−i∑
k=0

(
t− i
k

)
ηk‖(〈(Al

r)
∗Al, (M∗)⊗l〉)k‖S

≤
t−i∑
k=0

(
t− i
k

)
ηkσkl1 (U) = (1 + ησl1(U))t−i.

Before further upper-bounding ‖Et‖S , we define ts in such a way that

‖w̃t −wt‖∗ ≤ ‖w̃t‖∗, ∀t ≤ ts (46)

where w̃t is defined in (41). We will later justify the existence of ts and derive a lower bound. If the
above inequality holds true, we also have

‖wt‖∗ ≤ ‖w̃t‖∗ + ‖w̃t −wt‖∗ ≤ 2‖w̃t‖∗.

Recall the binomial formula again and decompose w̃t into

w̃t =

t∑
k=0

(
t

k

)
ηk〈(Al

r)
∗Al, (M∗)⊗l〉kw0 (47)
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Therefore, it follows from Lemma 9 that,

‖w̃i−1‖∗ ≤

(
i−1∑
k=0

(
i− 1

k

)
ηk‖〈(Al

r)
∗Al, (M∗)⊗l〉k‖∗

)
‖w0‖∗ (48)

for all i ≤ t. With the repeated application of Lemma 9, we have

‖〈(Al
r)
∗Al, (M∗)⊗l〉k‖∗ ≤ (‖U‖∗)kl ≤

(
rlUσ

l
1(U)

)k
Therefore, substituting back into (48) gives

‖w̃i−1‖∗ ≤

(
t∑

k=0

(
t

k

)
ηk
(
rlrlUσ

l
1(U)

)k) ‖w0‖∗ = (1 + η̃σl1(U))i−1‖w0‖∗

Next, plugging the above preparatory results into (44), we have that

‖Et‖S ≤
t∑
i=1

(1 + ησl1(U))t−iη(r2nLs)
l/2‖wi−1‖3∗

≤
t∑
i=1

(1 + ησl1(U))t−iη(r2nLs)
l/28‖w̃i−1‖3∗

≤ 8

t∑
i=1

(1 + ησl1(U))t−iη(r2nLs)
l/2(1 + η̃σl1(U))3i−3‖w0‖3∗

≤ 8ε3η(r2nLs)
l/2

t∑
i=1

(1 + η̃σl1(U))t−i(1 + η̃σl1(U))3i−3

= 8ε3‖x⊗l0 ‖3∗η(r2nLs)
l/2(1 + η̃σl1(U))t−1

t∑
i=1

(1 + η̃σl1(U))2i−2

= 8ε3‖x⊗l0 ‖3∗η(r2nLs)
l/2(1 + η̃σl1(U))t−1 (1 + η̃σl1(U))2t − 1

(1 + η̃σl1(U))2 − 1
(geometric sum)

≤ 8ε3‖x⊗l0 ‖3∗η(r2nLs)
l/2(1 + η̃σl1(U))t−1(1 + η̃σl1(U))2t

≤ 8η

η̃σl1(U)
ε3(r2nLs)

l/2(1 + η̃σl1(U))3t‖x⊗l0 ‖3∗

=
rl8

rlUσ
l
1(U)

ε3(nLs)
l/2(1 + η̃σl1(U))3t‖x⊗l0 ‖3∗

proving the original claim of this lemma (42). Now, we give a lower bound on ts. By recalling the
breakdown (47), we have

‖w̃t‖∗ ≥ ‖w̃t‖S ≥ 〈w̃t, v
⊗l
1 〉

= ε

t∑
k=0

(
t

k

)
ηk
[
|v>1 〈A∗rA,M∗〉kx0|

]l
= ε

t∑
k=0

(
t

k

)
ηk
[
|v>1 Ukx0|

]l
= ε

t∑
k=0

(
t

k

)
ηk(|σk1 (U)v>1 x0|)l = ε|v>1 x0|l(1 + ησl1(U))t

(49)

with v1 being the first singular vector of Ir � U . Since the sensing matrices are assumed to be
symmetric, U is also symmetric, hence the singular vectors of Uk coincide with those of U . By (42),
we also know

‖w̃t −wt‖∗
‖w̃t‖∗

≤ rl8

rlUσ
l
1(U)

ε2‖x⊗l0 ‖3∗
nl/2

(v>1 x0)l
Ll/2s

(1 + η̃σl1(U))3t

(1 + ησl1(U))t
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Therefore, for (46) to hold true, we need the RHS of the above equation to be smaller than 1, meaning
that

3t ln(1 + η̃σl1(U)) ≤ ln

(
rlUσ

l
1(U)

8rlε2L
l/2
s ‖x⊗l0 ‖3∗

(v>1 x0)l

nl/2

)
+ t ln(1 + ησl1(U))

This further implies that for (46) to hold, t should satisfy

t <

ln

(
rlUσ

l
1(U)

8rlε2L
l/2
s ‖x⊗l0 ‖3∗

(v>1 x0)l

nl/2

)
3 ln(1 + η̃σl1(U))− ln(1 + ησl1(U))

<

ln

(
rlUσ

l
1(U)

8rlε2L
l/2
s ‖x⊗l0 ‖3∗

(v>1 x0)l

nl/2

)
2 ln(1 + η̃σl1(U))

which after rearrangement gives (43).

Now, we present the proof of Lemma 2.

Proof of Lemma 2. Using the tensor Weyl’s inequality (Lemma 11), we have that

λv2(wt) ≤ λv2(w̃t) + ‖Et‖S (50)
λv1(wt) ≥ λv1(w̃t)− ‖Et‖S (51)

The only remaining part of the proof is the characterization of λv1(w̃t) and λv2(w̃t). The first term is
easy because we already have the characterization from the proof of Lemma 13, with (49) giving rise
to

‖w̃t‖S ≥ ε|v>1 x0|l(1 + ησl1(U))t

Also, by the definition of v-eigenvalues and (47), we have that

λv2(w̃t) = max
V

dim(V )=2

min
v∈V
‖v‖2=1

ε

t∑
k=0

(
t

k

)
ηk
[
|v>〈A∗rA,M∗〉kx0|

]l
= ε‖x0‖l2 max

V
dim(V )=2

min
v∈V
‖v‖2=1

t∑
k=0

(
t

k

)
ηk|v>Uk x0

‖x0‖2
|l

≤ ε‖x0‖l2 max
V

dim(V )=2

min
v∈V
‖v‖2=1

t∑
k=0

(
t

k

)
ηk|v>Ukv|l

= ε‖x0‖l2
t∑

k=0

(
t

k

)
ηk|v>2 Ukv2|l

= ε‖x0‖l2
t∑

k=0

(
t

k

)
ηk|σk2 (U)|l

= ε‖x0‖l2(1 + ησl2(U))t

where v2 is the singular vector associated with σk2 (U) ∀k ∈ [t]. Finally, combining the above
equations yields (6) after rearrangements.

Next, we present a supporting lemma which explains that Gaussian concentration is suited for our
purpose.
Lemma 14. Let x0 = v1 + g ∈ Rnr, where g is a vector with each entry being i.i.d sampled from
Gaussian distribution N (0, ρ). For some universal constant C, the follwoing inequalities hold:

P
[
|v>1 x0|l ≥ (1−O(

√
ρ))l

]
≥ 1− 2 exp(−C/ρ),

P
[
‖x0‖l2 ≤ (

√
1 + ρ2nr +O(ρ3/2))l

]
≥ 1− 2 exp(−C/ρ)

Proof of Lemma 14. We know that

|v>1 x0| = |1 + v>1 g| ≥ 1− |v>1 x0|
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Theorem 2.6.3 of [53] (general Hoeffding’s) gives that with probability at least 1− 2 exp(−t2/ρ2),

|v>g| ≤ t ∀‖v‖2 = 1

which leads to the first concentration bound after substituting t = O(
√
ρ) with some constant c1.

Then, Theorem 3.1.1 in [53] gives

P
[
|‖x0‖2 −

√
1 + ρ2nr| ≤ t

]
≥ 1− 2 exp(−c2t2/ρ4)

for g ∼ N (0, ρInr) and some constant c2. This is because E[‖x0‖22] = 1 + ρ2nr. Substituting
t = O(ρ3/2) yields that

P
[
‖x0‖2 ≤

√
1 + ρ2nr +O(ρ3/2)

]
≥ 1− 2 exp(−c2/ρ)

which results in the second bound. Now, we choose C = min{c1, c2}.

Then, we prove our main theorem of this section.

Proof of Theorem 1. First, set 2ζ = κ, implying that ζ < 1/2. We aim to derive sufficient conditions
for the following inequalities to hold:

λv2(w̃t) ≤
ζ

2
λv1(w̃t), (52)

‖Et‖s ≤
ζ

2
λv1(w̃t) (53)

By recalling Lemma 2, a sufficient condition for (52) is that

ε‖x0‖l2(1 + ησl2(U))t ≤ ζ

2
ε|v>1 x0|l(1 + ησl1(U))t

implying that
2‖x0‖l2
ζ|v>1 x0|l

≤
(

1 + ησl1(U)

1 + ησl2(U)

)t
which after rearrangements gives t ≥ t(ζ, l), as defined in (9). Then, we obtain a sufficient condition
for (53), which by Lemma 13 is

8rl

rlUσ1(U)l
ε3(nLs)

l/2(1 + η̃σ1(U)l)3t‖x⊗l0 ‖3∗ ≤
2

ζ
ε|v>1 x0|l(1 + ησl1(U))t (54)

contingent on the fact that t ≤ ts. Therefore, before going further, we need to verify that t(ζ, l) ≤ ts
for some small enough ε. (43) implies that a sufficient condition is

ln

(
2‖x0‖l2
ζ|v>1 x0|l

)
ln

(
1 + ησl1(U)

1 + ησl2(U)

)−1

≤
ln

(
σl1(U)rlU

8rlL
l/2
s ‖x⊗l0 ‖3∗ε2

|x>0 v1|
l

nl/2

)
2 ln(1 + η̃σl1(U))

Additionally, by leveraging the identity x/(1 + x) ≤ ln(1 + x) ≤ x, we derive the following identity

ln(1 + η̃σl1(U))

ln
(

1+ησl1(U)

1+ησl2(U)

)−1 ≤
rlU (1 + ησl1(U))

1− (σ2(U)/σ1(U))l
:= Ξ (55)

Hence,

2 ln

(
2‖w0‖l2
ζ|v>1 x0|l

)
Ξ ≤ ln

(
σl1(U)rlU

8rlL
l/2
s ‖x⊗l0 ‖3∗ε2

|x>0 v1|l

nl/2

)
and after rearrangement gives

ε2 ≤ σl1(U)rlU
8(r2nLs)l/2

|x>0 v1|l

‖x⊗l0 ‖3∗

(
2‖x0‖l2
ζ|v>1 x0|l

)−Ξ

(56)
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Notice that all of the above terms are independent of ε, and are positive. Therefore, a small enough ε
exists. Also notice that a smaller step-size η will yield a loser bound on ε through the dependence of
Ξ. Now, consider (54) again. Since T is finite, a sufficient condition for (54) is

ε2 ≤ ζ rlUσ1(U)l

16(r2nLs)l/2
|v>1 x0|l

‖x⊗l0 ‖3∗

(
1 + ησl1(U)

(1 + η̃σ1(U)l)3

)T
(57)

which can again be achieved by setting a small enough ε, since all other terms are positive and not
dependent on it. In summary, if we choose a small constant ε satisfying both (56) and (57), and if
ts ≥ tT (which again can be achieved via a sufficiently small ε), it is already sufficient for both (52)
and (53) to hold, thereby giving:

λv2(w̃t) + ‖Et‖S
λv1(w̃t)

≤ ζ

If ζ < 1/2, this further implies

λv1(w̃t) > 2λv2(w̃t) + 2‖Et‖S =⇒ ‖Et‖S ≤
1

2
λv1(w̃t)− λv2(w̃t) ≤

1

2
λv1(w̃t)

As a result,
λv2(wt)

λv1(wt)
≤ λv2(w̃t) + ‖Et‖S
λv1(w̃t)− ‖Et‖S

≤ ζλv1(w̃t)

λv1(w̃t)/2
= 2ζ

which proves (8).

Theorem 1 can also be improved via Lemma 14 as stated below.
Corollary 1 (Corollary to Theorem 1). Consider the optimization problem and the GD trajectory
given in Theorem 1. If additionally x0 = v1 + g ∈ Rnr and g ∼ N (0, ρInr), then

λv2(wt)

λv1(wt)
≤ κ for t � ln

(
1

κ

)
ln

(
1 + ησl1(U)

1 + ησl2(U)

)−1

(58)

provided that

ε �
√
κ/2

(σ1(U)rU )l/2

4(r2nLs)l/4
(
κ

4
)3Ξ/2, where Ξ :=

rlU (1 + ησl1(U))

1− (σ2(U)/σ1(U))l
(59)

with probability at least 1 − 2 exp(−C/ρ) for some universal constant C as ρ → 0, where σ1(U)
and σ2(U) are the first two singular values of U = 〈Ar, b〉3, with v1 being the associated singular
vector of σ1(U) (� denotes "asymptotic to", meaning that the two terms of both sides of this symbol
are of the same order of magnitude).

Proof of Corollary 1. The proof is similar to that of Theorem 1 (note ζ = κ/2), and therefore we
only highlight the difference. We know that (23) holds true if

t ≥ ln

(
2‖x0‖l2
ζ|v>1 x0|l

)
ln

(
1 + ησl1(U)

1 + ησl2(U)

)−1

,

ε2 ≤ σl1(U)rlU
8(r2nLs)l/2

|x>0 v1|l

‖x⊗l0 ‖3∗

(
2‖x0‖l2
ζ|v>1 x0|l

)−Ξ

It results from Lemma 14 that for our choice of initialization, we have that

‖x0‖l2 � ‖v>1 x0|l � 1

with probability at least 1− 2 exp(−C/ρ). Thus, as long as

t � ln

(
2

ζ

)
ln

(
1 + ησl1(U)

1 + ησl2(U)

)−1

:= t∗, (60)

ε � (σ1(U)rU )l/2

2
√

2(r2nLs)l/4

(
2

ζ

)−Ξ/2

(61)
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(23) will hold with high probability. Next, in order for (53) to hold for t � t∗, we know that

ε2 ≤ ζ rlUσ1(U)l

16(r2nLs)l/2
|v>1 x0|l

‖x⊗l0 ‖3∗

(
1 + ησl1(U)

(1 + η̃σ1(U)l)3

)t∗
Via the same order of magnitude argument, we know that the following condition is sufficient for
(53):

ε �
√
ζ

(σ1(U)rU )l/2

4(r2nLs)l/4

(
1 + ησl1(U)

(1 + η̃σ1(U)l)3

)t∗/2
Now, (

1 + ησl1(U)

(1 + η̃σ1(U)l)3

)t∗/2
≥
[

1

(1 + η̃σ1(U)l)3

]t∗/2
= exp

(
−3t∗

2
ln(1 + η̃σ1(U)l)

)

= exp

−3

2
ln(

2

ζ
)
ln(1 + η̃σ1(U)l)

ln
(

1+ησl1(U)

1+ησl2(U)

)


≥ exp

(
−3

2
ln(

2

ζ
)Ξ

)
= (

ζ

2
)3Ξ/2

where the second equality follows from the substitution of t∗, and the last inequality follows from
(55). As a result,

ε �
√
ζ

(σ1(U)rU )l/2

4(r2nLs)l/4
(
ζ

2
)3Ξ/2 (62)

Therefore, taking the minimum of (61) and (62), we know that

ε �
√
ζ

(σ1(U)rU )l/2

(r2nLs)l/4
(
ζ

2
)3Ξ/2 (63)

is sufficient for (52) and (53), leading to (58) via the same steps in the proof of Theorem 1.

D Additional Details for Properties of Approximate Rank-1 Tensors

We start with the proof of Proposition 1.

Proof of Proposition 1. Given a symmetric tensor w, it can be decomposed as

w =

rw∑
i=1

λix
⊗l
i

where rw is w’s symmetric rank. Now, consider the vector ws ∈ Rn that attains the spectral norm,
meaning that 〈w, w⊗ls 〉 = λv1(w). One can decompose each x⊗li into a parallel component and an
orthogonal component. To be more specific,

xi = xsi + x⊥i =⇒ x⊗li = (xsi )
⊗l +

2l−1∑
j=1

x⊥i ⊗ · · · ⊗ x⊥i︸ ︷︷ ︸
j

⊗xsi ⊗ · · · ⊗ xsi︸ ︷︷ ︸
l−j

and it is apparent that the second term is orthogonal to w⊗ls via Lemma A.4. Therefore, we just
organize all components w⊗ls together and all orthogonal components together. By definition, the
parallel component has the magnitude λv1(w). Also, by the definition of v-eigenvalues, ‖w†‖S ≤
λv2(wt) since otherwise the dominant direction of w† will just become the second eigenvector of
w.

We now provide the proof of Proposition 2.
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Proof of Proposition 2. According to (17a), the gradient of (5) with respect to w can be expressed as

∇hl(w) = 〈〈(Al
r)
∗Al, 〈P(w),P(w)〉2∗[l] − (M∗)⊗l〉,w〉2∗[l] (64)

where (Al
r)
∗Al is defined in (40). In light of (10), one can write

〈P(w),P(w)〉2∗[l] = 〈〈P⊗l,P⊗l〉2∗[l],w ⊗w〉3,4,7,8,...,4l−1,4l

= 〈〈P⊗l,P⊗l〉,wσ ⊗wσ〉︸ ︷︷ ︸
a1

+2 〈〈P⊗l,P⊗l〉,wσ ⊗w†〉︸ ︷︷ ︸
a2

+ 〈〈P⊗l,P⊗l〉,w† ⊗w†〉︸ ︷︷ ︸
a3

where wσ = λv1(w)ŵ⊗l. Note that we have dropped the subscripts from the second line and
henceforth for sake of simplicity. By using this logic, (64) can be written as

∇hl(w) = 〈〈(Al
r)
∗Al, 〈a1 − (M∗)⊗l〉,wσ〉︸ ︷︷ ︸

h1

+h2

where

h2 =〈〈(Al
r)
∗Al,a1〉,w†〉+ 〈〈(Al

r)
∗Al,a2〉,wσ〉+ 〈〈(Al

r)
∗Al,a2〉,w†〉+

〈〈(Al
r)
∗Al,a3〉,wσ〉+ 〈〈(Al

r)
∗Al,a3〉,w†〉 − 〈〈(Al

r)
∗Al, (M∗)⊗l〉,w†〉

The first term can be analyzed as

〈〈(Al
r)
∗Al,a1〉,w†〉 = 〈(Al

r)
∗Al, 〈〈P⊗l,P⊗l〉,wσ ⊗wσ ⊗w†〉〉

and by Lemma 9, we have that

‖〈〈(Al
r)
∗Al,a1〉,w†〉‖S ≤ ‖〈〈P⊗l,P⊗l〉,wσ ⊗wσ ⊗w†〉‖S‖(Al

r)
∗Al‖∗

= ‖〈P(wσ),P(wσ)〉 ⊗w†‖S‖(Al
r)
∗Al‖∗

≤ λv1(w)2‖w†‖S‖(Al
r)
∗Al‖∗ ≤ κλv1(w)3rl‖A∗A‖l∗

(65)

The second inequality follows form that for all u1 ∈ Rn and u2 ∈ Rnr such that ‖u1‖2 = 1 and
‖u2‖2 = 1:

‖〈P(wσ),P(wσ)〉 ⊗w†‖S = max
u1,u2

〈〈P(wσ),P(wσ)〉 ⊗w†, u⊗2l
1 ⊗ u⊗l2 〉

≤ λv1(w)2(u>mat(x̂) mat(x̂)>u)l‖w†‖S
≤ λv1(w)2σmax(mat(x̂))2l‖w†‖S
≤ λv1(w)2‖x̂‖2l2 ‖w†‖S
= λv1(w)2‖w†‖S

Repeating this process leads to

‖h2‖S ≤ (3κ+ 3κ2 + κ3 + κ‖M∗‖2F )λv1(w)3rl‖A∗A‖l∗ (66)

Similarly, ‖h1‖S = O(λv1(w)3rl‖A∗A‖l∗). Now, if we assume that w is an FOP of (5), it means
that∇hl(w) = 0, further implying ‖∇hl(w)‖S = 0, and by reverse triangle inequality,

0 = ‖∇hl(w)‖S ≥ |‖h1‖S − ‖h2‖S |

which means that ‖h1‖S = ‖h2‖S . Since there always exits a small enough κ such that ‖h2‖S =
c‖h1‖S with c < 1, and therefore the only possibility that the above inequality holds true is that
‖h1‖S = ‖h2‖S = 0. This implies

〈h1, u
⊗l〉 = (〈A,mat(ws) mat(ws)

> −M∗〉>〈A,mat(ws) mat(u)>〉)l = 0 ∀u ∈ Rnr

which is equivalent to the FOP condition for (2), which is (13), meaning that mat(ws) ∈ Rn×r is an
FOP of (2). Note that we can always scale A and b together so that ‖A∗A‖l∗ can be normalized to
1.

Finally, we prove the main result of this paper.
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Proof of Theorem 2. We consider the SOP condition for (5), which is (17b) for some rank-1 tensor
∆. We can express it as

∇2hl(ŵ)[∆,∆] =2 〈∇f l(〈P(ŵ),P(ŵ)〉2∗[l]), 〈P(∆),P(∆)〉2∗[l]︸ ︷︷ ︸
a1(ŵ)

+

‖〈A⊗l, 〈P(ŵ),P(∆)〉2∗[l] + 〈P(∆),P(ŵ)〉2∗[l]〉‖2F︸ ︷︷ ︸
a2(ŵ)

Let ∆ be defined identically to that in the proof of Theorem 4, meaning that ∆ = vec(U)⊗ := u⊗l.
By the same logic of (64), we have that

a1(ŵ) = 〈〈(Al
r)
∗Al, 〈P(ŵ),P(ŵ)〉 − (M∗)⊗l〉,∆⊗∆〉

= 〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉, ŵ ⊗ ŵ ⊗∆⊗∆〉〉︸ ︷︷ ︸

b1

−〈(Al
r)
∗Al, (M∗)⊗l ⊗∆⊗∆〉〉

Since ŵ is a κ-rank-1 tensor, by denoting λS x̂⊗l := wσ , we represent

b1 =〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉,wσ ⊗wσ ⊗∆⊗∆〉〉+

2 〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉,wσ ⊗ ŵ† ⊗∆⊗∆〉〉︸ ︷︷ ︸

c1

+

〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉, ŵ† ⊗ ŵ† ⊗∆⊗∆〉〉︸ ︷︷ ︸

c2

Hence,
a1(ŵ) = a1(wσ) + 2c1 + c2

Now, we turn to a2(ŵ). Since the sensing matrices are assumed to be symmetric, by (29), we have

a2(ŵ) = 4〈〈(Al
r)
∗Al, 〈P(ŵ),P(∆)〉,∆⊗ ŵ〉

= 4 〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉, ŵ ⊗∆⊗ ŵ ⊗∆〉〉︸ ︷︷ ︸

b2

again following the procedures in (64). Given the decomposition of ŵ, we decompose b2 similarly
to b1:

b2 =〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉,wσ ⊗∆⊗wσ ⊗∆〉〉+

〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉,wσ ⊗∆⊗ ŵ† ⊗∆ + ŵ† ⊗∆⊗wσ ⊗∆〉〉︸ ︷︷ ︸

c3

+

〈(Al
r)
∗Al, 〈〈P⊗l,P⊗l〉, ŵ† ⊗∆⊗ ŵ† ⊗∆〉〉︸ ︷︷ ︸

c4

Combining everything together, we have

∇2hl(ŵ)[∆,∆] = a1(wσ) + 2c1 + c2 + a2(wσ) + 4c3 + 4c4

= ∇2hl(wσ)[∆,∆] + 2c1 + c2 + 4c3 + 4c4

In addition, following the same procedures in (65),

2c1 + c2 + 4c3 + 4c4 ≤ (10κ+ 5κ2)λ2
Sr
l‖A∗A‖l∗

Now, since wσ is a lifted version of FOP for (2) (via Proposition 1),

∇2hl(wσ)[∆,∆] ≤ −2Gl +
2

2l−1
Llsλr(X̂X̂

>)l

where X̂ = mat(x̂) and G := −λmin(∇f(X̂X̂>)) ≥ 0. Remember that the choice of ∆ is identical.
Therefore, a sufficient condition for∇2hl(ŵ)[∆,∆] ≤ 0 is that

2Gl ≥ 2

2l−1
Llsλr(X̂X̂

>)l + (10κ+ 5κ2)λ2
Sr
l‖A∗A‖l∗
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We can derive another sufficient condition to the above inequality, which is

G ≥ 21/l−1Lsλr(X̂X̂
>) + (5κ+ 5κ2/2)1/lλ

2/l
S r‖A∗A‖∗

since (a+ b)1/l ≤ a1/l + b1/l for a, b ≥ 0. Following the steps of the proof of Theorem 4, we obtain
that

‖M∗ − X̂X̂>‖2F > 21/lLs
αs
λr(X̂X̂

>) tr(M∗) +O(rκ1/l)

is sufficient. Note that ‖A∗A‖∗ can be rescaled to 1 easily. Following the same steps, we can set

β =
Ls tr(M∗)λr(X̂X̂

>)

αs‖M∗ − X̂X̂>‖2F −O(rκ1/l)

and this leads to the desirable result.
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E Custom Algorithms

Algorithm 1: CustomGD Algorithm
1 Input: learning_rate, n, r, l, prob_params, loss, g_thres, buffer, beta, gamma, eta_0
2 Initialize variables: A, b, escape_saddle, buffer_limit, buffer_step
3 Function init(starting_point, lr)
4 if lr 6= 0 then
5 learning_rate← lr // Update learning rate if specified
6 end
7 return {′curr_iter′ : 0,′ t_noise′ : 0,′ curr_w′ : starting_point}
8 Function update(gradients, opt_state)
9 curr_iter← opt_state[’curr_iter’] + 1

10 t_noise← opt_state[’t_noise’]
11 curr_w← opt_state[’curr_w’]
12 if ‖gradients‖ < g_thres and curr_iter > 100 then
13 if escape_saddle then
14 t_noise← curr_iter
15 w_s← find rank 1 component of curr_w using tensor PCA
16 direction← find the escape direction of w_s // According to Theorem 2
17 this_eta← eta_0
18 while loss(curr_w + this_eta * direction) > loss(curr_w) + beta * this_eta *

inner_product(gradients, direction) do
19 this_eta← this_eta * gamma // Update eta using gamma,

backtracking line search
20 end
21 updates← this_eta * direction
22 escape_saddle← False
23 end
24 else
25 buffer_step← buffer_step + 1
26 if buffer_step == buffer_limit then
27 escape_saddle← True
28 buffer_step← 0
29 end
30 updates← -learning_rate * gradients
31 end
32 end
33 else
34 escape_saddle← False
35 updates← -learning_rate * gradients
36 end
37 return updates, {′curr_iter′ : curr_iter,′ t_noise′ : t_noise,′ curr_w′ : curr_w + updates}
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Algorithm 2: Tensor PCA Algorithm
1 Input: tensor, lr, epochs, gradnorm_epsilon, lambd_v, key
2 Function tensor_PCA(tensor, lr, epochs, gradnorm_epsilon, lambd_v, key)
3 Function loss(eigenval_eigenvec, tensor)
4 lambd, v← eigenval_eigenvec
5 k← len(tensor.shape)
6 for each element in tensor.shape do
7 tensor← inner(tensor, v)
8 end
9 first_term← square(lambd) * power(norm(v), 2*k)

10 res← first_term - 2*lambd*tensor
11 return res
12 s← tensor.shape[0]
13 if lambd_v is None then
14 v← random.normal(shape=(s,)) / sqrt(s)
15 lambd← 0.001 * random.normal()
16 end
17 else
18 lambd, v← lambd_v
19 end
20 loss, grads, lambd_v← adam_optimize((loss, (lambd, v), tensor), lr, epochs,

gradnorm_epsilon)
21 lambd, v← lambd_v
22 sign← sign(lambd)
23 return sign * power(abs(lambd), 1 / len(tensor.shape)) * v
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