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Abstract

The training of all modern machine learning mod-
els including deep neural networks and large lan-
guages models can be considered as solving non-
convex optimization problems, which are in gen-
eral NP-Hard and notoriously difficult to solve
efficiently. In this work, we propose a new ap-
proach to tackle non-convexity by introducing
structured noise in order to smooth out the chal-
lenging optimization landscape at the cost of some
accuracy. We demonstrate our approach using ma-
trix completion, a key non-convex problem criti-
cal to various machine learning applications like
recommender systems. Conventionally, a benign
optimization landscape, and by extension, the suc-
cessful recovery of ground truth for matrix com-
pletion, can only be guaranteed under stringent
conditions, such as the presence of strong incoher-
ence and large number of observations. By intro-
ducing a specific kind of perturbation, we could
transform matrix completion problems into noisy
matrix sensing problems, which in turn allows the
use of over-parametrization to achieve guarantees
of recovery without the need for restrictive as-
sumptions. This novel strategy not only pioneers
the solving of matrix completion, but also opens
new pathways for addressing non-convex chal-
lenges globally, potentially benefitting machine
learning practices more broadly.

1. Introduction
Non-convex optimization presents significant challenges in
modern machine learning, particularly in training complex
models like deep neural networks, generative models, and
beyond. Unlike convex problems, non-convex optimization
landscapes are characterized by multiple local minima, sad-
dle points, and regions of flat curvature, complicating the
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search for global optima (Jain and Kar, 2017). This com-
plexity often leads to convergence issues, where algorithms
may become trapped in suboptimal solutions, hindering
model performance and generalization capabilities. Tradi-
tional gradient-based methods, such as stochastic gradient
descent (SGD) and its adaptive variants like Adam and RM-
SProp, are commonly employed to navigate these complex
landscapes. These methods iteratively adjust model param-
eters to minimize loss functions, but their efficiency can
be compromised by the intricate topography of non-convex
spaces. To mitigate these challenges, techniques like learn-
ing rate scheduling, momentum, and gradient clipping are
often utilized to enhance convergence and stability during
training (Fotopoulos et al., 2024).

However, while these techniques offer partial improvements,
they do not fully address the underlying difficulties posed by
non-convex optimization (Sun and Luo, 2019). The reliance
on local heuristics and adjustments does not fundamentally
alter the non-convex nature of the problem. Current methods
are far from solving non-convex training effectively, as they
often do not guarantee convergence to global optima and can
lead to varied results depending on the initial conditions and
specific configurations used. Consequently, a more in-depth
and comprehensive study of such landscapes is essential.
One popular way of doing so is to focus on mathematically
structured non-convex problems like low-rank matrix recov-
ery. Such problems have garnered increased attention due
to their potential to provide deep insights. Low-rank matrix
tasks, including matrix completion (MC) and matrix sensing
(MS), are crucial in numerous domains like machine learn-
ing and signal processing. They involve reconstructing a
low-rank matrix from incomplete observations or linear mea-
surements, with applications spanning collaborative filtering
in recommendation systems (Koren et al., 2009), motion de-
tection (Fattahi and Sojoudi, 2020), and power system state
estimation (Zhang et al., 2017; Jin et al., 2019), to image
recovery (Gu et al., 2014) and biomedical imaging (Lustig
et al., 2008). More significantly, as these frameworks can
encapsulate any polynomial optimization problem (Moly-
bog et al., 2020) and are equivalent to training two-layer
quadratic neural networks (Li et al., 2018), their theoretical
impact extends well beyond their direct applications in the
broader machine learning community.
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Matrix sensing generally involves recovering a matrix from
a set of linear measurements, formulated as:

min
X∈Rn×rsearch

1

2
∥A(XXT )− b∥22 := f(XXT ) (MS) (1)

For the sake of convenience, we also denote h(X) :=
f(XX⊤). Here, A acts on the low-rank matrix XXT

(rank bounded by rsearch by construct) and compares it
to a vector of observations b = A(M∗), with M∗ be-
ing the rank-r ground truth matrix of interest. A(·) :
Rn×n 7→ Rm is a linear function defined as A(M) =
[⟨A1,M⟩, . . . , ⟨Am,M⟩]T where ⟨Ai,M⟩ := tr(A⊤

i M)
and the sensing matrices {Ai}mi=1 are given. For simplicity,
we assume rsearch = r. The matrix completion challenge, a
special case of matrix sensing, is given by:

min
X∈Rn×r

1

2
∥AΩ(XXT −M∗)∥22 (MC) (2)

where Ω ⊆ [n]× [n] represents the observed entries of an
n× n matrix. We use the notation NΩ to denote the matrix
where

(NΩ)i,j = Ni,j · 1(i,j)∈Ω (3)

for any arbitrary N ∈ Rn×n. AΩ(·) is used to specifically
denote the sensing operator of the matrix completion prob-
lem, where AΩ(M) = vec(MΩ).

Matrix completion is distinguished by its reliance on the
sample rate and the matrix’s incoherence parameters. These
parameters dictate the spread of matrix information across
its entries and singular vectors (Candès and Recht, 2009;
Candès and Tao, 2010). This dependency complicates ma-
trix completion compared to matrix sensing, where chal-
lenges are often more tractable due to properties like Re-
stricted Isometry Property (RIP) (Recht et al., 2010). In this
work, we use the equivalent notions of Restricted Strong
Convexity (RSC) and Smoothness (RSS) to offer greater
flexibility:

Definition 1.1 (Restricted Strong Smoothness (RSS) and
Restricted Strong Convexity (RSC)). The linear operator
A : Rn×n 7→ Rm satisfies the (Ls, r)-RSS property and
the (αs, r)-RSC property if

A(M)−A(N) ≤ ⟨M −N,∇f(N)⟩+ Ls

2
∥M −N∥2F

A(M)−A(N) ≥ ⟨M −N,∇f(N)⟩+ αs

2
∥M −N∥2F

are satisfied, respectively for all M,N ∈ Rn with
rank(M), rank(N) ≤ r. Note that RSS and RSC provide a
more expressible way to represent the RIP property (Recht
et al., 2010), with δr = (Ls − αs)/(Ls + αs).

Matrix completion problems, on the other hand, all have
missing entries, which means that they could not have a

valid RSC constant since the null-space of AΩ(·) is always
non-trivial. This is why incoherence condition was proposed
to use as a metric to guarantee recovery of completion prob-
lems:

Definition 1.2 (µ0-incoherence). (Ge et al., 2017) Given
a rank-r matrix M ∈ Rn1×n2 , we say it is µ0-incoherent if
its truncated SVD decomposition UΣV ⊤ satisfies

∥e⊤i U∥2 ≤
√

µ0r/n1, ∥e⊤j V ∥2 ≤
√

µ0r/n2

∀i, j ∈ [n1], [n2], where ei is the i-th standard basis of Rn1

and ej is the j-th standard basis of Rn2 .

Since µ0 is hard to gauge prior to solving this problem,
applying matrix completion guarantees can be more chal-
lenging than matrix sensing problems with valid RSS and
RSC constants. Thus, this paper introduces novel method-
ologies to solve matrix completion, thereby broadening its
theoretical accessibility and enhancing its practical applica-
bility. The proposed approaches aim to reduce the reliance
on strong assumptions, making these powerful techniques
more accessible to a wider range of real-world applications.

1.1. Related Works

We briefly review some notable prior works dedicated to
solving matrix sensing and matrix completion problems
with guarantees, and highlight the (surprising) power of
over-parametrization that is attracting increased attention in
machine learning community.

RECOVERY GUARANTEES

The foundational work by (Candès and Recht, 2009) es-
tablished that exact matrix recovery is possible from few
entries, requiring a sample size of µ0n

1.2r log(n) for n× n
matrices of rank r with incoherence parameter µ0. Enhance-
ments in recovery guarantees and computational efficiencies
followed, including spectral-gradient descent algorithms by
(Keshavan et al., 2010) and deeper insights into incoher-
ence by (Candès and Tao, 2010). Studies by (Recht, 2011)
and (Gross, 2011) expanded on these by demonstrating suc-
cessful recovery without uniform random sampling, while
(Ding and Chen, 2020) refined sampling orders further to
µ0r log(µ0r)n log(n).

Research into Burer-Monteiro factorization has explored
non-convex optimization strategies for matrix completion,
including greedy algorithms (Lee and Bresler, 2010; Wang
et al., 2014), alternating minimization (Haldar and Her-
nando, 2009; Tanner and Wei, 2016; Wen et al., 2012), iter-
ative thresholding (Klopp, 2015) and Riemannian optimiza-
tion (Mishra et al., 2014; Dai and Milenkovic, 2010)—re-
viewed comprehensively in (Nguyen et al., 2019). Although
lacking explicit recovery guarantees, these methods demon-
strate empirical effectiveness, with some, like ADMiRA
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(Lee and Bresler, 2010), dependent on RIP conditions not
generally applicable in matrix completion. Another inter-
esting line of work converts inductive matrix completion
into regular MC (Ghassemi et al., 2018; Zilber and Nadler,
2022), but they have extra information A,B not considered
in this classical setting (2) and they also assumed incoher-
ence conditions for A,B matrices, which we hope to avoid
in this work.

Recent developments (Ge et al., 2016; 2017; Du et al., 2017)
have provided robust recovery guarantees for matrix comple-
tion using gradient descent and variants. These studies con-
firm that absent spurious solutions if each entry is observed
with a probability p ≥ poly(κ, r, µ0, log n)/n, ensuring the
success of BM in polynomial time with saddle-escaping
algorithms, reflecting SDP literature findings. Similarly to
MC results, it has long been known (Recht et al., 2010; Can-
dès and Tao, 2010) that the RIP constants (see Definition 1.1)
play a central role in determining whether this non-convex
problem could be solved to optimality with guarantees. It is
widely understood that δ2r = 1/2 is a sharp threshold for
the factorized Burer-Monteiro (BM) formulation (1) (Zhang
et al., 2021; Ma et al., 2022), and a sufficient bound for SDP
relaxation (Cai and Zhang, 2013).

This raises the question of applying matrix sensing’s RIP-
based literature to matrix completion, an area that remains
largely unexplored despite initial efforts like (Zhang et al.,
2023) to bridge this theoretical gap.

POWER OF OVER-PARAMETRIZATION

Recent studies have highlighted over-parametrization as
a crucial strategy in matrix sensing when RIP constants
are suboptimal (i.e., δ2r ≥ 1/2). Research by (Zhang,
2021; 2022) examined cases where the search rank rsearch
exceeds the true rank r, thus increasing the problem’s
parametrization. (Zhang, 2022) demonstrated that for
rsearch > r[(1 + δn)/(1− δn)− 1]2/4 and r ≤ rsearch < n,
each solution X̂ satisfies X̂X̂⊤ = M∗. Similarly, (Ma and
Fattahi, 2022) established analogous results under RIP-type
conditions for the ℓ1 loss. In addition to the classic over-
parametrization strategy of increasing rsearch, there are many
other forms of over-parametrization, and convex relaxation
(Recht et al., 2010) is certainly one of them since the param-
eter space is increased from O(nr) to O(n2). Regarding
convex relaxation, Yalcin et al. (2023) showed that the RIP
threshold for exact recovery using SDP can approach 1 when
M∗ has a high true rank, thus underscoring the efficacy of
over-parametrization. Nevertheless, the practical applicabil-
ity of these conditions is limited, leading (Ma et al., 2023)
to explore an alternative approach to over-parametrization
by lifting the search space of (1) into general tensor space
and bank on important concepts from Sums-of-Squares opti-
mization (Parrilo, 2003; Lasserre, 2001) to convert spurious

local minimizers of (1) into strict saddle points in the lifted
space so that they could be escaped by modern optimizers.
Despite its utility in resolving spurious solutions, this ten-
sor approach’s applicability to matrix completion remains
constrained by the need for a valid RIP constant.

1.2. Our Approach and Main Contributions

In an effort to bridge the theoretical gaps identified in ma-
trix completion (MC) problems, our research introduces a
framework designed to carefully perturb the problem so that
they will exhibit Restricted Isometry Property (RIP) charac-
teristics, albeit with a trade-off in solution precision. The
core of our methodology involves making the nullspace of
our sensing matrices to be trivial and leveraging the power
of over-parametrization in problem solving. Here are the
principal steps of our approach:

1. Constructing Surrogate Problem: We construct a
surrogate problem (ϵ-MC) to solve by slightly chang-
ing AΩ. This is achieved by introducing controlled
perturbations to the sensing matrices, transforming a
MC scenario into a manageable noisy MS problem.
This step is crucial for aligning the MC problem with
the more favorable theoretical properties of MS.

2. Verifying Surrogate Quality: We establish that the
global solution to the surrogate problem will be close
to the ground truth M∗ with high probability under
mild assumptions.

3. Adaptation of Lifted Tensor Framework: We extend
the lifted tensor framework, originally discussed in
(Ma et al., 2024), to our perturbed MS problem. This
is because we need the power of over-parametrization
to handle the perturbed MS problem with very high
RIP constants.

While the details of these steps might appear counter-
intuitive at first glance, we will provide a thorough expo-
sition in subsequent sections to clarify our methods and
findings. Moreover, this strategy leads to two significant
contributions to the field of low-rank matrix recovery:

• Proposes a framework to perform matrix completion
with global guarantees without the need for the ground
truth to obey incoherence conditions or for the ob-
served entries to have certain structures, enabling a
much wider range of MC problems to be solved with
guarantees.

• We validate that the lifted tensor framework (Ma et al.,
2023; 2024) remains effective in scenarios with noise
corruption, thereby expanding its utility and robust-
ness.
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2. Notation
Scalar values such as σi(M) and λi(M) represent the i-th
largest singular value and eigenvalue of matrix M , respec-
tively. The inner product between two matrices ⟨A,B⟩ is
defined as tr(A⊤B). The Euclidean norm of a vector v
is denoted as ∥v∥, while ∥M∥F and ∥M∥2 are used for
the Frobenius and induced l2 norms of a matrix M . Vec-
torization vec(M) stacks the columns of M into a vector,
where mat(v) is its reserve operation. The set of integers
from 1 to n is expressed as [n]. Moreover, ◦l indicates a
repeated Cartesian product for l times, ⊘ refers to the Kro-
necker product, and ⊗ signifies the tensor outer product. If
these notations come with subscripts, they denote the di-
mension along which the operation is performed. Finally,
if S ∈ [n]× [m] represents a subset of indices of a n×m
matrix, then NS refers to the sub-matrix of N ∈ Rn×m

relevant to S as per (3), and ∥N∥S,F denotes the Frobenius
norm of NS .

3. The Perturbed Matrix Completion
Formulation

As explained above, most literature regarding the recovery
guarantees of matrix sensing problems require some valid
RIP (RSC and RSS) constant. However, the attainment of
such a constant automatically implies a trivial nullspace,
meaning that A only maps a zero matrix to a zero vector,
which is impossible for matrix completion problems. To
demonstrate why this is, let’s consider a 2 × 2 matrix re-
covery problem, and say we observed three entries of some
M ∈ R2×2 except for the lower-right entry. This will corre-
spond to the case where

AΩ(M) = vec(

[
1 1
1 0

]
⊙M) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 vec(M)

:= TΩ vec(M) ∈ R4

(4)
For this AΩ to exhibit any RIP constant δ < 1, it is re-
quired that ∥AΩ(M)∥22 ≥ (1 − δ)∥M∥2F , meaning that
the TΩ matrix above cannot output 0 unless M is a zero
matrix. Nevertheless, for this specific example, even if
we observed three out of four entries, we can simply set
vec(M) = [0, 0, 0, 1]⊤ to make AΩ(M) = 0, violating the
RIP condition. This is a simple example showing us that
RIP condition will not hold for matrix completion problems
unless all entries are observed, regardless of its size. There-
fore, it begs the question of whether we could use the better
studied, more powerful over-parametrized MS framework
to offer guarantees for MC problems?

Despite this limitation, a surprisingly simple solution exists.
The primary issue is the zero entries in the diagonal of TΩ,

contributing to a non-trivial nullspace. By perturbing these
zero entries slightly with a small number ϵ ∈ (0, 1], we can
eliminate the nullspace. Revisiting (4), consider a perturbed
sensing operator AΩ,ϵ:

AΩ,ϵ(M) = vec

([
1 1
1 ϵ

]
⊙M

)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ϵ

 vec(M)

:= TΩ,ϵ vec(M)
(5)

in which TΩ,ϵ has a trivial nullspace as promised. However,
different operators lead to different observations. For exam-
ple, when considering the case of (4), using AΩ and AΩ,ϵ

on the same matrix results in:

AΩ(M) =


M1,1

M1,2

M2,1

0

 −→ AΩ,ϵ(M) =


M1,1

M1,2

M2,1

ϵM2,2


Therefore, the original observation b can be considered a
noisy observation under the context of AΩ,ϵ, with

b = AΩ,ϵ(M
∗) + wϵ, wϵ =

[
0 0 0 −ϵM∗

2,2

]⊤
(6)

where wϵ ∈ Rn2

can be considered a noise term. With
this idea in place, we formally introduce our perturbed MC
problem to solve:

min
X∈Rn×rsearch

∥AΩ,ϵ(XXT )− b∥22 := fwϵ(XX⊤) (ϵ-MC)

(7)
Essentially, we’re transforming a noiseless matrix comple-
tion problem into a noisy matrix sensing problem with op-
erator AΩ,ϵ and deterministic noise wϵ. This approach, no-
tably, ensures the attainment of valid RSS/RSC parameters,
equivalent to RIP constants.

Lemma 3.1. Given an arbitrary matrix completion problem
with sensing operator AΩ, if this operator is perturbed to
produce AΩ,ϵ according to (5) with a scalar ϵ ∈ (0, 1], then
the ϵ-MC problem will exhibit (1, n)-RSS property and the
(ϵ2, n)-RSC property.

The proof is straightforward and omitted for brevity. With
that said, another major challenge that the perturbed formu-
lation of ϵ-MC problems brings is that the global solution
of ϵ-MC might not be M∗ anymore. This can be easily seen
since ∥AΩ,ϵ(M

∗)− b∥22 ̸= 0. In other words, since the core
idea of our approach is to solve the surrogate ϵ-MC problem
in order recover M∗, we need to know the conditions under
which M∗ will be close to the global solution of (7), since
later on we will show that over-parametrization via lifting
could help us reach the global solution, denoted as M†, with
guarantees. Inspired by (Ma and Fattahi, 2023), we hope
to link it with the number of corrupted observations. If we
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adopt the standard assumption that each entry of the matrix
is independently observed with probability p, then we could
generalize this observation by linking it to p. As our next
step, we show that M† will be very close to M∗ with high
probability, and we can further achieve a tradeoff between
sample rate p and geometric uniformity captured by ϵ.

We will briefly go over the high-level ideas in this deriva-
tion and present our formal theorem in the end. Since we
assumed that M† is the global optimum of (7), then by defi-
nition it gives that fwϵ

(M†)−fwϵ
(M∗) ≤ 0. If we partition

the set Ω into S̄, the observed, noiseless entries, and S, the
unobserved, perturbed entries, then we could decompose
fwϵ

(M†)− fwϵ
(M∗) as:

fwϵ(M
†)− fwϵ(M

∗) =
1

2
∥AΩ,ϵ(M

† −M∗)∥2S̄,2

+
1

2
∥AΩ,ϵ(M

† −M∗)− wϵ∥2S,2 −
1

2
∥wϵ∥2S,2

≥1

2
∥AΩ,ϵ(M

† −M∗)∥2S̄,2 −
1

2
ϵ2∥M∗∥2S,F

(8)

where ∥ · ∥S,2 denotes the l2 norm of the sub-vector with
entries in set S. Then if we add 1

2∥M
† −M∗∥2S,2 to both

sides of (8), it is easy to show

1

2
∥M† −M∗∥2F ≤ 1

2

(
∥M† −M∗∥2S,F + ϵ2∥M∗∥2S,F

)
(9)

Here we look into the right hand side terms of (9) a bit
more carefully, and realize that both ∥M† −M∗∥2S,F and
∥M∗∥2S,F are random variables with their sizes dependent
on the sampling rate. Since ∥ · ∥2S only denotes the size of
the sub-matrix that are not observed (therefore perturbed
by ϵ), if our sample rate p is small, this norm would also
be small in expectation. Combining this intuition with con-
centration inequality to control deviation, gives this next
theorem which serves as our main result showing why the
ϵ-MC problem (7) can serve as a meaningful surrogate to
the original MC problem.

Theorem 3.2. Assume that M† ∈ Rn×n is a symmetric,
rank-r matrix that is a global optimum of (7) with an ϵ ∈
(0, 1]. Assume that each entry of the original MC problem
is independently observed with probability p, then for any
χ ≤ p ∈ R,

∥M† −M∗∥2F ≤ 1− p+ χ

p− χ
ϵ2∥M∗∥2F (10)

holds with probability at least 1− exp
(
−2χ2∥d∥21/∥d∥22

)
,

where d ∈ Rn2

is defined as

vec(M†−M∗)⊙vec(M†−M∗)+ϵ2 vec(M∗)⊙vec(M∗)
(11)

We begin by noting that for any vector d, elementary in-
equalities ensure that 1 ≤ ∥d∥21/∥d∥22 ≤ n2. This ratio

increases as the values of d become more evenly distributed.
In proving our theorem, we employed Hoeffding’s inequal-
ity to achieve clear and interpretable results. While other
concentration inequalities like Bennett’s inequality can also
be applied to independent, bounded variables, they do not
always provide a tighter bound and would complicate the
expression, hence they are not included in this work. We
recognize the potential for employing more advanced sta-
tistical tools to refine these bounds. Readers interested in
exploring this further can find the proof of the theorem in
the Appendix.

4. Lifted Tensor Framework with Noise
Now that we are able to reformulate the original MC prob-
lem (2) into the new ϵ-MC problem (7), it presents us with
a new challenge. Although now (7) admits valid RSC/RSS
constants, this is nevertheless still a difficult matrix sens-
ing problem to solve due to its small RSC constant (or
large RIP constant). Thus, it is important that we apply
an over-parametrized framework to deal with it in order to
compensate for the poor geometric uniformity.

To this end, we employ the lifted tensor framework proposed
in (Ma et al., 2023), since it has the ability to deal with really
small RSC constants, like those we have in ϵ-MC. However,
in their original work, measurements were assumed to be
clean, and this is incompatible with our framework since we
hope to deal with noisy MS problems. Thus, we generalize
the original results in (Ma et al., 2023), and also in its
subsequent work (Ma et al., 2024) to demonstrate how the
inclusion of noise could affect guarantees in when using a
higher-order tensor parametrization.

First of all, we present the lifted tensor problem when our
observations are corrupted by some random noise w̃ ∈ Rm,

min
w∈Rnr◦l

∥⟨A⊗l, ⟨P(w),P(w)⟩2∗[l]⟩ − b̃⊗l∥2F (12)

where b̃ = A(M∗) + w̃, and A ∈ Rm×n×n is a three-way
tensor which can be seen as a concatenation of all sensing
matrices {Ai}mi=1, and w ∈ Rnr◦l is the tensor decision
variable used to increase the parametrization of X ∈ Rn×r.
Here, ⊗l simply denotes l times of repeated tensor outer
product, and P is just another constant permutation tensor
used for correct multiplication. The gist of this paper is not
on the tensor formulation, thus many details are deferred to
Appendix A, and interested readers can learn more about
general tensor knowledge and problem details there. For
convenience’s sake, we define f l(·) : Rn◦2l 7→ R and
hl(·) : R[n×r]◦l 7→ R as f l(M) := ∥⟨A⊗l,M⟩ − b̃⊗l∥2F
and hl(w) = f l(⟨w,w⟩2∗[l]), with ∇f l(·) = ∇Mf l(·) and
∇hl(·) = ∇whl(·).

In the original works, it was proven that the lifted formula-
tion (12) is able to convert spurious solutions in (1) to strict
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saddle points via its drastic over-parametrization if this spu-
rious solution is somehow far away from the ground truth
M∗. However, the first thing to note here is that for any
corrupted MS problem (its observation b is not clean and
affected by noise), its global solution might not correspond
to M∗ anymore, which is the same challenge that we faced
in the ϵ-MC formulation. This means that spurious solu-
tions have to be even more distant to M∗ for it be converted
into strict saddles, depending on the intensity of noise. The
result is summarized in the following theorem:

Theorem 4.1. Consider an arbitrary second-order point
X̂ ∈ Rn×r of the factorized matrix sensing objective in the
form of (1) where its observations b could be potentially
corrupted by some random noise w̃ ∈ Rm (i.e. b = b̃).
Assuming that the linear operator A(·) in (1) satisfies the
RSC and RSS conditions with constants αs, Ls respectively.
Then ŵ = vec(X̂)⊗l is a strict saddle of (12) with a rank-1
symmetric escape direction if

∥M∗ − X̂X̂⊤∥2F ≥ Ls

αs
λr(X̂X̂⊤) tr(M∗) +

∥w̃∥22
αs

(13)

with an odd l satisfying

l >
1

1− log2(2β)
, β :=

Ls tr(M
∗)λr(X̂X̂⊤)

αs∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22
.

(14)

The proof of this theorem is located in Appendix B. The
theorem highlights how the conversion radius from spurious
solutions to strict saddles is influenced by the norm of the
noise w̃. Setting w̃ = 0 allows this theorem to coincide with
Theorem 4 from (Ma et al., 2024). More importantly, it is
crucial for the critical point ŵ in (12) to be a rank-1 tensor to
possess a negative escape direction. For a detailed definition
of tensor rank, please see Appendix A. According to (Ma
et al., 2024), employing a gradient descent (GD) algorithm
with sufficiently small initialization ensures that the search
is conducted over approximately rank-1 tensors through-
out the GD trajectory. This work further establishes that
this characteristic remains unchanged when b is substituted
with b̃, showing that the effects of implicit bias induced by
vanilla GD is agnostic of noise. Here we present an infor-
mal version of this result to facilitate understanding, and the
full version and its proof can be found in Appendix A and
Appendix B respectively:

Theorem 4.2 (Informal). Consider a finite-horizon gradient
descent trajectory {wt}t∈[T ] of (12) with wt+1 = wt −
η∇hl(wt) starting from the initialization w0 = ξx⊗l

0 with
ξ ∈ R denoting the scale of the initialization, η representing
the step-size and x0 ∈ Rnr being an arbitrary vector with
∥x0∥22 = 1. Then for a sufficiently small ξ, there exists an
iteration number t(κ, l) ≥ 1 that depends on an arbitrary

constant κ < 1 and lifting degree l such that

λv
2(wt)

λv
1(wt)

≤ κ, ∀t ∈ [t(κ, l), T ] (15)

where λv
i (·) denotes the i-th largest v-eigenvalue (see Ap-

pendix A) of a given tensor, thereby meaning that the ra-
tio between the second largest eigenvalue and the largest
eigenvalue is small, which implies that the tensor is approxi-
mately rank-1 after iteration t(κ, l) along the GD trajectory
{wt}t∈[T ]. Furthermore, t(κ, l) increases with a smaller κ,
meaning that the tensor along the trajectory will become
increasingly like rank-1 as GD updates happen.

If x0 is initialized as x0 = v1 + g ∈ Rnr where g is
i.i.d. centered Gaussian and v1 is the first singular vec-
tor of U , where U is a function of A and b; we can also
show that wt will be approximately rank-1 as soon as
t ≍ ln (1/κ) ln

(
(1 + ησl

1(U))/(1 + ησl
2(U))

)−1
, if ξ is

chosen as a function of U, r, n, Ls, without the need for it
to be arbitrarily small. However, since such results are not
the main focal point of this work, we will not elaborate here
for the sake of succinctness. The main takeaway is that
by incorporating the noise w̃ into our objective (12), the
ability of gradient descent algorithms to induce implicit bias
remains unchanged. It is also worth noting that the results
presented in this subsection applies to all tensor problems in
the form of (12), which are lifted from general noisy matrix
sensing problems, and not specific to our ϵ-MC problem.

5. Main Results
Our goal is to achieve a globally optimal solution for the ϵ-
MC problem because it closely represents the M∗ solution.
However, this becomes challenging due to the αs constant
in equation (7), which depends on the small value of ϵ.
To address this, rather than solving the problem using its
basic matrix (BM) factorized form (as shown in equation
(1)), which lacks global optimization guarantees, we apply
more complex techniques with over-parametrization. We
previously demonstrated that the lifted tensor framework
(12), independent of the specific ϵ-MC problem, effectively
handles noise in the observed data (when b becomes b̃), with
the quality of the guarantee degrading as the magnitude of
corruption increases.

By integrating these methodologies, we demonstrate a new
way to approximately solve the generic MC problem (as
formulated in equation (2)) while still providing reliable
global solutions, as elaborated in our main theorem below

Theorem 5.1. Consider the matrix completion problem
of completing a n × n, rank-r matrix M∗, where Ω ⊆
[n]× [n] denotes the set of observed entries and Ω̄ denotes
the unobserved entries. Introduce a perturbation ϵ ∈ (0, 1]
to formulate an ϵ-MC problem as per (7). Applying the
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Figure 1. Probability Lower-Bound for Theorem 3.2.

tensor framework described in (12) to this ϵ-MC problem
yields the following results:

For any rank-1 critical point ŵ = vec(X̂)⊗l of (12), if it is
a second-order point (local minima), this implies that

∥M∗ − X̂X̂⊤∥F <
1

ϵ
λr(X̂)

√
tr(M∗) + e1 (16)

holds with probability at least q, under the condition that l
is odd and meets the requirement:

l >
1

1− log2(2β)
, β :=

tr(M∗)λr(X̂X̂⊤)

ϵ2
(
∥M∗ − X̂X̂⊤∥2F − e2

) .
(17)

For all instances of the MC problem, the following hold:

e1 = e2 = ∥M∗∥2Ω̄,F , q = 1 (18)

Alternatively, if all entries are observed independently with
probability p, e2 could be ignored (i.e. e2 = 0) and:

e1 =

√
1− p+ χ

p− χ
ϵ∥M∗∥F , q = 1− e(−2χ2∥d∥2

1/∥d∥
2
2)

(19)
where χ and d are defined as per Theorem 3.2.

Our main theorem builds directly on the results of Theo-
rem 4.1, applying specific parameters (Ls = 1, αs = ϵ2)
along with the definition of wϵ from equation (6). This
leads to a deterministic outcome where the probability q
equals 1. However, there’s a critical aspect to consider: the
transition from a spurious solution is contingent upon the
condition described in (16). A significant challenge arises if
∥M∗∥2

Ω̄,F
is large, potentially rendering this bound vacuous.

Here, the utility of Theorem 3.2 becomes evident. Under its
probabilistic framework, we apply a triangle inequality to

reduce the bound e1 to
√

1−p+χ
p−χ ϵ∥M∗∥F . This adjustment

is particularly valuable, as the presence of ϵ and p can sig-
nificantly diminish the error term, effectively countering the

inaccuracies introduced by our approximation method. Also
note that although the bound (16) contains the term tr(M∗),
which we previously said was unaccessible (especially in
the incoherence calculation), knowing it or not in advance
will not affect whether the problem could be solved using
the lifted framework, and it only affects the theoretical guar-
antees describing worst-case scenarios. The proof to this
theorem can be found in Appendix B.

This theorem presents a new approach to matrix com-
pletion that is not reliant on the incoherence parameter
or strict observation modes, diverging from established
results like those in (Ge et al., 2017; Candes and Plan,
2010), which require a high sample rate on the magnitude
of O(µ0n

1.2r log(n)) with unknown constant scale. Our
method offers a flexible tradeoff between observation proba-
bility and solution accuracy, effectively managing a gradual
degradation in assurance. Furthermore, with the introduc-
tion of ϵ, it enables us to actively trade-off solution accuracy
with computational complexity. This adjustment is partic-
ularly effective in noisy scenarios where some degree of
inaccuracy is unavoidable, making our approach both prac-
tical and justifiable for real-world applications.

The results of Theorem 5.1 only apply to rank-1 critical
points. To adhere to this, we can start our gradient de-
scent algorithm at a small scale, leveraging Theorem A.8 to
maintain the rank constraint. Theorem A.9 in Appendix A
summarizes the results, and it is not presented here as its
complex details could distract from the central narrative of
Theorem 5.1.

6. Numerical Experiments
In this section, we numerically demonstrate the effective-
ness of our method1 against traditional BM based and semi-
definite relaxation (SDP) methods.

1’https://github.com/anonpapersbm/mc_noisy_ms’,run on M1
Max Macbook Pro
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(a) Problem Instance (20) (b) Problem Instance with Independent Entries

Figure 2. Success Rates for Our Approach compared to Standard Approaches.

To further the investigation, we introduce a benchmark ma-
trix completion problem described in (Yalçın et al., 2022),
known to be difficult:

Ω = {(i, i), (i, 2k), (2k, i)| ∀i ∈ [n], k ∈ [⌊n/2⌋]}, (20)

M∗ is also chosen identically to Example 1 from (Yalçın
et al., 2022) to ensure consistency. The study applies the BM
factorized formulation (2), and our approach to address (20).
Our approach employs the lifted problem (12) with l = 3,
culminating in a tensor wT after T iterations of gradient
descent. A tensor PCA algorithm (Ma et al., 2024) extracts
the principal component XT ∈ Rn×r, approximating wT as
vec(XT )

⊗l. XT then serves as the solution to the original
problem (2). A successful instance of gradient descent is
defined by ∥XTX

⊤
T −M∗∥F ≤ 0.05. Preferring the success

rate metric over average reconstruction error minimizes
the impact of outliers and reduces variance, providing a
more reliable measure of efficacy. This approach is also
tested against a standard model where each entry of M∗ is
observed with a probability p = 0.15, since this was the
main focus of classic matrix completion literature. Results
are documented in Figure 2.

Figure 2 clearly demonstrates the superior success rate of
the proposed method compared to both the BM formulation
and SDP relaxation (Candès and Tao, 2010) across different
settings and problem sizes n. It is noteworthy that the SDP
relaxation, being a convex problem, is executed only once
per scenario, as it reliably converges to a global solution.
However, for the specific instance (20), the SDP approach
will be invalid since there are other SDP matrices N such
that NΩ = M∗

Ω. For the independent observation model,
the variability of Ω necessitates running 10 distinct problem
instances for each size n, with each instance undergoing
20 trials to estimate the success rate. This testing approach

showcases the higher success rate of the proposed method.
Additionally, the convex relaxation typically surpasses the
BM formulation, as indicated in Figure 2b. Experimental
conditions included a ϵ = 5 ∗ 10−5, a learning rate of 2e-
2, an initialization scale of ξ = 10−4 for (12), and the
utilization of the Adam optimizer (Kingma and Ba, 2014)
for all experiments except those involving the semi-definite
problem, where the open-source SCS solver was employed.

7. Conclusion
In conclusion, our study introduces an approach to address-
ing the inherent complexities of non-convex optimization
problems by adding more noise. By challenging the conven-
tional strategy of minimizing noise to solve complex prob-
lems, our research introduces a controlled noise mechanism
that not only elevates theoretical promises but also enables a
strategic management of trade-offs in problem-solving. The
developed ϵ-MC framework enhances practical application
by allowing the integration of matrix sensing techniques,
providing a flexible framework that could benefit general
matrix completion problems. Our findings encourage con-
tinued exploration in actively incorporating noise and ran-
domness into machine learning problems in order to reduce
training complexity.
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A. Additional Details for Noisy Lifted Framework
A.1. Additional Definitions

Definition A.1 (Tensor). As a generalization of the way vectors are used to parametrize finite-dimensional vector spaces, we
use arrays to parametrize tensors generated from product of finite-dimensional vector spaces, as per (Comon et al., 2008).
In particular, we define an l-way array as such:

a = {ai1i2...il |1 ≤ ik ≤ nk, 1 ≤ k ≤ l} ∈ Rn1×···×nl

Note that in this paper tensors and arrays can be regarded as synonymous since there exists an isomorphism between them.
Moreover, if n1 = · · · = nl, then we call this tensor(array) an l-order(way), n-dimensional tensor. For the convenience
of tensor representation, we use the notation Rn◦l with n ◦ l := n× · · · × n. In this work, tensors are denoted with bold
variables, and other fonts are reserved for matrices, vectors, and scalars unless specified otherwise.

Definition A.2 (Symmetric Tensor). Similar to the definition of symmetric matrices, for an order-l tensor a with the same
dimensions (i.e., n1 = · · · = nl), also called a cubic tensor, it is said that the tensor is symmetric if its entries are invariance
under any permutation of their indices:

aiσ(1)···iσ(l)
= ai1···il ∀σ, i1, . . . , il ∈ {1, . . . , n}

where σ ∈ Gl denotes a specific permutation and Gl is the symmetric group of permutations on {1, . . . , l}. We denote the
set of symmetric tensors as Sl(Rn).

Definition A.3 (Rank of Tensors). The rank of a cubic tensor a ∈ Rn◦l is defined as

rank(a) = min{r|a =

r∑
i=1

ui ⊗ vi ⊗ · · · ⊗ wi}

for some vector ui, . . . , wi ∈ Rn. Furthermore, according to (Kolda, 2015), if a is a symmetric tensor, then it can be
decomposed as:

a =

r∑
i=1

λiui ⊗ · · · ⊗ ui :=

r∑
i=1

λiu
⊗l
i

and the rank is conveniently defined as the number of nonzero λi’s, which is very similar to the rank of symmetric matrices
indeed. The most important concept in our paper is rank-1 tensors, and for any tensor a, a necessary and sufficient condition
for it to be rank-1 is that

a = u⊗l

for some u ∈ Rn.

Definition A.4 (Tensor Multiplication). Outer product is an operation carried out on a pair of tensors, denoted as ⊗. The
outer product of 2 tensors a and b, respectively of orders l and p, is a tensor of order l + p, denoted as c = a⊗ b such that:

ci1...ilj1...jp = ai1...ilbj1...jp

When the 2 tensors are of the same dimension, this product is such that ⊗ : Rn◦l × Rn◦p 7→ Rn◦(l+p). Henceforth, we use
the shorthand notation

a⊗ · · · ⊗ a︸ ︷︷ ︸
l times

:= a⊗l

We also define an inner product of two tensors. The mode-q inner product between the 2 aforementioned tensors having the
same q-th dimension is denoted as ⟨a,b⟩q . Without loss of generality, assume that q = 1 and

[⟨a,b⟩q]i2...ilj2...jp =

nq∑
α=1

aαi2...ilbαj2...jp

Note that when we write ⟨·, ·⟩q, we count the q-th dimension of the first entry. Indeed, this definition of inner product can
also be trivially extended to multi-mode inner products by just summing over all modes, denoted as ⟨a,b⟩q,...,s.

11



Solving Matrix Completion as Noisy Matrix Sensing

Lemma A.5 (Section 10.2 (Petersen et al., 2008)). For four arbitrary matrices A,B,C,D of compatible dimensions, it
holds that

⟨A⊗B,C ⊗D⟩2,4 = AC ⊗BD (21)

Definition A.6 (Variational Eigenvalue of Tensors (Ma et al., 2024)). For a given tensor w ∈ Rn◦l, we define its kth

variational eigenvalue (v-Eigenvalue) λv
k(w) as

λv
k(w) := max

S
dim(S)=k

min
u∈S

|⟨w,u⟩|
∥u∥2F

, k ∈ [n]

where S is a subspace of Rn◦l that is spanned by a set of orthogonal, symmetric, rank-1 tensors. Its dimension denotes the
number of orthogonal tensors that span this space.

A.2. Formulation Details

As noted in our main formulation (12), the decision variable w is a tensor of dimension nr × · · · × nr, since it serves as a
repeated outer product of vec(X) with X ∈ Rn×r being our original decision variable in (1) (here we assume rsearch = r).
The permutation P is needed in order to convert w ∈ Rnr◦l back to R[n×r]◦l in order to do meaningful inner products.
P ∈ Rn×r×nr is defined as

⟨P, vec(X)⟩3 = X ∀X ∈ Rn×r, n, r ∈ Z+

Such P can be easily constructed via filling appropriate scalar "1"s in the tensor. Via Lemma A.1, we also know that

⟨P⊗l, vec(X)⊗l⟩3∗[l] = (⟨P, vec(X)⟩3)⊗l = X⊗l (22)

Notationally, we abbreviate ⟨P⊗l,w⟩3∗[l] as P(w) for enhanced readability for an arbitrary tensor w with dimension greater
or equal to 2.

Since we also make extensive use of first and second order critical points of (12), we present them here for accessibility:
Lemma A.7. The tensor ŵ ∈ Rnr◦l is an SOP of (12) if and only if

⟨∇f l(⟨P(ŵ),P(ŵ)⟩2∗[l]),P(ŵ)⟩2∗[l] = 0, (23a)

2⟨∇f l(⟨P(ŵ),P(ŵ)⟩2∗[l]), ⟨P(∆),P(∆)⟩2∗[l]+
∥⟨A⊗l, ⟨P(ŵ),P(∆)⟩2∗[l] + ⟨P(∆),P(ŵ)⟩2∗[l]⟩∥2F ≥ 0 ∀∆ ∈ Rnr◦l (23b)

with (23b) being a necessary and sufficient condition for ŵ to be a FOP and ∇f l
w(M) is defined as

∇f l
w(M) = ⟨(A⊗l)∗A⊗l,M⟩ − [⟨A∗A,M∗⟩+ ⟨A∗, w̃⟩]⊗l (24)

The proof to this lemma is highly technical and can be obtained by slightly changing the proof to Lemma 7 in (Ma et al.,
2024) by changing b = A(M∗) to b̃ = A(M∗) + w̃ defined above.

Here we present the full theorem of Theorem 4.2 regarding implicit bias in (12):
Theorem A.8. Consider a finite-horizon gradient descent trajectory {wt}t∈[T ] of (12) with wt+1 = wt − η∇hl(wt)

starting from the initialization w0 = ξx⊗l
0 with ξ ∈ R denoting the scale of the initialization, η representing the step-size

and x0 ∈ Rnr being an arbitrary vector with ∥x0∥22 = 1. Then there exists t(κ, l) ≥ 1 and κ < 1 such that

λv
2(wt)

λv
1(wt)

≤ κ, ∀t ∈ [t(κ, l), T ] (25)

if the initialization scale ξ is sufficiently small, where t(κ, l) is expressed as

t(κ, l) =

⌈
ln

(
∥x0∥l2

κ|v⊤1 x0|l

)
ln

(
1 + ησl

1(U)

1 + ησl
2(U)

)−1
⌉

(26)

where σ1(U) and σ2(U) denote the first and second singular values of U and v1, v2 are the associated singular vectors,
with

U = ⟨Ar, b̃⟩1 ∈ Rnr×nr, Ar := Ir ⊘2,3 A (27)
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Next, we present a technical extension of Theorem 5.1 and Theorem A.8, showing how gradient descent initialized with
small scale can help ensure that second-order points of lifted version of (7) remain very close to M∗ along the optimization
trajectory

Theorem A.9. Consider a generic matrix completion problem under the same premise as given in Theorem 5.1. Assume that
the symmetric tensor ŵ ∈ Rnr◦l is a second-order point (local minima) of (12) that is κ-rank-1 with κ ≤ O(1/∥M∗∥2F ).
This can be achieved by initializing the vanilla gradient algorithm at w0 = ξx⊗l

0 with a sufficiently small ξ > 0 ∈ R. Then
after iterations t(κ, l) given in (26), Theorem A.8 ensures that all tensors along the trajectory will become κ-rank-1.

If ŵ’s major spectral decomposition is given as ŵ = λS x̂
⊗l+ŵ† with x̂ ∈ Rnr being a FOP of (7) (ensured by Proposition

2 in (Ma et al., 2024)), we know that

∥M∗ − X̂X̂⊤∥F <
1

ϵ
λr(X̂)

√
tr(M∗) +O(

√
rκ1/2l) + e1 (28)

holds with probability at least q, under the condition that l is odd and meets the requirement:

l >
1

1− log2(2β)
, β :=

tr(M∗)λr(X̂X̂⊤)

ϵ2
(
∥M∗ − X̂X̂⊤∥2F −O(rκ1/l)− e2

) . (29)

where e1, e2, and q are identical to those given in Theorem 5.1 depending on different MC instances.

The proof of this Theorem is omitted because it directly follows from Theorem 5.1, Theorem A.8, and Theorem 2 in (Ma
et al., 2024).

B. Missing Proofs
Proof to Theorem 3.2. To begin with, we reiterate our elementary results which follows from the definition of M† and that
of (7):

0 ≥ fwϵ
(M†)− fwϵ

(M∗)

=
1

2
∥AΩ,ϵ(M

† −M∗)∥2S̄,2 +
1

2
∥AΩ,ϵ(M

† −M∗)− wϵ∥2S,2 −
1

2
∥wϵ∥2S,2

=
1

2
∥AΩ,ϵ(M

† −M∗)∥2S̄,2 +
1

2
∥AΩ,ϵ(M

†)∥2S,2 −
1

2
ϵ2∥M∗∥2S,2

≥1

2
∥AΩ,ϵ(M

† −M∗)∥2S̄,2 −
1

2
ϵ2∥M∗∥2S,2

This follows from the simple observation that

(wϵ)i = −ϵ vec(M∗)i ∀ i ∈ [n2]

Then moving 1
2ϵ

2∥M∗∥2S,2 to the left hand side, and adding 1
2∥M

† −M∗∥2S,2 to both sides gives

∥M† −M∗∥2F ≤ ∥M† −M∗∥2S + ϵ2∥M∗∥2S,2 (30)

If we define a new vector d ∈ Rn2

in which

d := vec(M† −M∗)⊙ vec(M† −M∗) + ϵ2 vec(M∗)⊙ vec(M∗)

then we know that
di =

(
vec(M†)i − vec(M∗)i

)2
+ ϵ2 vec(M∗)2i ≥ 0 ∀ i ∈ [n2]

So if we further define a series of random variables {r1, r2, . . . , rn2} with

ri =

{
0 with probability p

di with probability 1− p
(31)

Then we know that

∥M† −M∗∥2S + ϵ2∥M∗∥2S,2 =

n2∑
i=1

ri := R (32)
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because for any matrix M ∈ Rn1×n2 , we have

∥M∥2S =

n1n2∑
i

m2
i , mi =

{
0 with probability p

vec(M)i with probability 1− p

Then we simply acknowledge that 0 ≤ ri ≤ di almost surely, which sets up the premise to use Hoeffding’s inequality
(Hoeffding, 1994). This concentration inequality gives that

P (R ≤ E[R] + t) ≥ 1− exp

(
−2t2∑n2

i (di − 0)2

)
= 1− exp

(
−2t2

∥d∥22

)
(33)

First of all, we could easily derive that

E[R] =

n2∑
i

(1− p)
[(
vec(M†)i − vec(M∗)i

)2
+ ϵ2 vec(M∗)2i

]
= (1− p)

(
∥M† −M∗∥2F + ϵ2∥M∗∥2F

) (34)

Therefore combining (30), (33) and (34) we have

P
(
∥M† −M∗∥2F ≤ (1− p)

(
∥M† −M∗∥2F + ϵ2∥M∗∥2F

)
+ t
)
≥ 1− exp

(
−2t2

∥d∥22

)
(35)

Then we can choose
t = χ

(
∥M† −M∗∥2F + ϵ2∥M∗∥2F

)
= χ∥d∥1

for some constant χ ≤ p. This will then transform (35) into

P
(
∥M† −M∗∥2F ≤ (1− p+ χ)

(
∥M† −M∗∥2F + ϵ2∥M∗∥2F

))
≥ 1− exp

(
−2t2

∥d∥22

)
=⇒ P

(
(p− χ)∥M† −M∗∥2F ≤ (1− p+ χ)ϵ2∥M∗∥2F

)
≥ 1− exp

(
−2χ2∥d∥21

∥d∥22

)
=⇒ P

(
∥M† −M∗∥2F ≤ 1− p+ χ

p− χ
ϵ2∥M∗∥2F

)
≥ 1− exp

(
−2χ2∥d∥21

∥d∥22

) (36)

which proves our desired result directly.

Proof of Theorem 4.1. First of all, we hope to decompose the Hessian of (1) at a second order point X̂ ∈ Rn×r. Classic
matrix sensing literatures like (Ha et al., 2020; Zhang et al., 2021; Li et al., 2019) give that the second-order critical condition
of (1) are given as

∇f(X̂X̂⊤)X̂ = 0, (37)

2⟨∇f(X̂X̂⊤), UU⊤⟩+ [∇2f(X̂X̂⊤)](X̂U⊤ + UX̂⊤, X̂U⊤ + UX̂⊤) ≥ 0 ∀U ∈ Rn×r (38)

with (37) being the first order critical condition. Moreover, since the sensing matrices {Ai}i∈[m] can be assumed be to
symmetric without loss of generality (Zhang et al., 2021), we have that

[∇2f(X̂X̂⊤)](X̂U⊤ + UX̂⊤, X̂U⊤ + UX̂⊤) = 4[∇2f(X̂X̂⊤)](X̂U⊤, X̂U⊤).

We then could decompose LHS of (38) as 2C1 + 4C2 where

C1 := ⟨∇f(X̂X̂⊤), UU⊤⟩, C2 := [∇2f(X̂X̂⊤)](X̂U⊤, X̂U⊤)

Given the assumption that (1) obeys some RSS condition, it is possible to upper-bound C2 by observing

[∇2f(X̂X̂⊤)](X̂U⊤ + UX̂⊤, X̂U⊤ + UX̂⊤) ≤ Ls∥X̂U⊤ + UX̂⊤∥2F
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Therefore, if want to somehow create an negative escape direction for X̂ , it is important that we find a U such that C1 is
negative and large in magnitude, and then amplify this term via tensor parametrization. To do so, we first do a more in-depth
analysis of ∇f(X̂X̂⊤). As mentioned above, since ∇f(·) can be assumed to be symmetric, one can select u ∈ Rn such
that u⊤∇f(x̂x̂⊤)u = λmin(∇f(x̂x̂⊤)). Then via the definition of RSC we have

f(M∗) ≥ f(X̂X̂⊤) + ⟨∇f(X̂X̂⊤),M∗ − X̂X̂⊤⟩+ αs

2
∥X̂X̂⊤ −M∗∥2F . (39)

With X̂ being a first-order point, according to (37)

∇f(X̂X̂⊤)X̂ = 0 =⇒ ⟨∇f(X̂X̂⊤), X̂X̂⊤⟩ = 0

Therefore, if in (1) our b is corrupted as A(M∗) + w̃, then plugging it back into (39) gives

⟨∇f(X̂X̂⊤),M∗⟩ ≤ −αs

2
∥x̂x̂⊤ −M∗∥2F + f(M∗)− f(XX⊤)

≤ −αs

2
∥x̂x̂⊤ −M∗∥2F + f(M∗)

= −αs

2
∥x̂x̂⊤ −M∗∥2F +

∥w̃∥22
2

(40)

where the second inequality follows from the fact that f(·) ≥ 0 in its entire domain and the last inequality follows from
f(M∗) = 1/2∥A(M∗) − A(M∗) − w̃∥22 = ∥w̃∥22/2. Furthermore, since both ∇f(X̂X̂⊤) and M∗ are assumed to be
positive semidefinite,

⟨∇f(X̂X̂⊤),M∗⟩ ≥ λmin(∇f(X̂X̂⊤)) tr(M∗)

which implies that

λmin(∇f(X̂X̂⊤)) ≤ −αs∥X̂X̂⊤ −M∗∥2F + ∥w̃∥22
2 tr(M∗)

(41)

Furthermore, (13) gives us
∥X̂X̂⊤ −M∗∥2F ≥ ∥w̃∥22/αs

since Ls

αs
λr(X̂X̂⊤) tr(M∗) ≥ 0 by definition. This means that

λmin(∇f(X̂X̂⊤)) ≤ −αs∥X̂X̂⊤ −M∗∥2F + ∥w̃∥22
2 tr(M∗)

≤ 0 (42)

Thus, with this result equipped, we can further find a U that makes C1 small. In the most convenient manner, we first
consider the eigenvector u ∈ Rn of ∇f(X̂X̂⊤) associated with λmin(∇f(X̂X̂⊤)). Additionally we consider q ∈ Rr to be
the r-th singular value of X̂ , with

∥X̂q∥2 = σr(X̂), ∥q∥2 = 1

Then choosing U ∈ Rn×r = uq⊤ leads to

C1 = ⟨∇f(X̂X̂⊤), UU⊤⟩ = ⟨∇f(X̂X̂⊤), uu⊤⟩ = −G

where G := −λmin(∇f(X̂X̂⊤)) ≥ 0. By recalling X̂⊤u = 0 according to the first-order condition (37), we can further
bound C2 with this chocie of U as

Ls∥X̂U⊤ + UX̂⊤∥2F = Ls∥u(X̂q)⊤ + (X̂q)u⊤∥2F
= 2Ls∥X̂q∥2F + 2Ls(q

⊤(X̂⊤u))2

= 2Lsλr(X̂X̂⊤),

leading to

C2 ≤ 1

2
Lsλr(X̂X̂⊤)
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Now, if we choose ∆ = vec(U)⊗l for the aforementioned U ∈ Rn×r, the LHS of (23b) can be expressed as:

2(⟨A, X̂X̂⊤⟩⊤2,3⟨A, uu⊤⟩2,3)l − 2
(
(⟨A,M∗⟩2,3 + w̃)⊤⟨A, uu⊤⟩2,3

)l
+ 4(∥⟨A, X̂U⊤⟩2,3∥22)l

≤2(λmin(∇f(X̂X̂⊤)))l + 4Cl
2

=2Cl
1 + 4Cl

2

(43)

where the inequality follows from:
an − bn ≤ (a− b)n, ∀b ≥ a ≥ 0

Here, since a− b = C1 ≤ 0, the above inequality can be used. As a result,

LHS of (23b) ≤ −2Gl︸ ︷︷ ︸
Part 1

+
2

2l−1
Ll
sλr(X̂X̂⊤)l︸ ︷︷ ︸
Part 2

We know since G ≥ 0, Part 1 is always negative assuming l is odd, and Part 2 is always positive. Therefore, it suffices to
find an order l such that

Gl > (1/2l−1)Ll
sλr(X̂X̂⊤)l (44)

Conveniently, (42) says that

G ≥ αs∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22
2 tr(M∗)

, (45)

which can be used to derive sufficient condition for (44). Therefore, if(
αs∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22

2 tr(M∗)

)l

> (1/2l−1)Ll
sλr(X̂X̂⊤)l,

we can conclude that (44) holds, which implies that the LHS of (23b) is negative, directly proving that X̂⊗l is not an SOP
anymore. Elementary manipulations of the above equation give that a sufficient condition is

∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22/αs > 21/l
Ls

αs
λr(X̂X̂⊤) tr(M∗) (46)

We now consider (13), which means that

λr(X̂X̂⊤) ≤ αs∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22
Ls tr(M∗)

(47)

Subsequently, define a constant γ such that

Lsλr(X̂X̂⊤) = γ

[
αs∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22

2 tr(M∗)

]
Then, (45) and (47) together imply that 1 ≤ γ < 2. Using this simplified notation, our sufficient condition (46) becomes

1 >
γ

2(l−1)/l
(48)

Given 1 ≤ γ < 2, there always exists a large enough l such that (48) holds, which proves that LHS of (23b) is negative,
proving that vec(X̂)⊗l is a strict saddle, concluding the proof.

To derive a sufficient l, we simply acknowledge

γ =
2Ls tr(M

∗)λr(X̂X̂⊤)

αs∥M∗ − X̂X̂⊤∥2F − ∥w̃∥22
:= 2β

and that β ≤ 1 due to assumption (13). Therefore, for (48) to hold true, it is enough to have

2(l−1)/l > 2β =⇒ l − 1

l
> log2(2β) =⇒ l >

1

1− log2(2β)
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Proof of Theorem A.8. First of all, we hope to decompose the GD trajectory of (12) {wt}Tt=0 as follows:

wt+1 = ⟨Zt,w0⟩ −Et := w̃t −Et (49)

where

Zt := (I + η⟨A⊗l
r , b̃⊗l⟩)t, Ar = Ir ⊘2,3 A

Et :=

t∑
i=1

(I + η⟨A⊗l
r , b̃⊗l⟩)t−iÊi

Êi := η⟨⟨(Al
r)

∗Al, ⟨P(wi−1),P(wi−1)⟩2∗[l]⟩,wi−1⟩2∗[l]
(Al

r)
∗Al := ⟨(Ar)

⊗l,A⊗l⟩3,6,...,3l ∈ R[nr×nr×n×n]◦l

This can be proved via induction where

w1 =
(
I + η⟨A⊗l

r , b̃⊗l − (A⊗l)∗⟨P(w0),P(w0)⟩
)
w0

= (I + η⟨A⊗l
r , b̃⊗l⟩)w0 − η⟨(Al

r)
∗Al, ⟨P(w0),P(w0)⟩⟩w0

= ⟨Z1,w0⟩ −E1

This serves as our base case, and the induction step can be proven as

wt+1 =
(
I + η⟨A⊗l

r , b̃⊗l − (A⊗l)∗⟨P(wt),P(wt)⟩
)
wt

= (I + η⟨A⊗l
r , b̃⊗l⟩)wt − η⟨(Al

r)
∗Al, ⟨P(wt),P(wt)⟩⟩wt

= (I + η⟨A⊗l
r , b̃⊗l⟩)wt − Êt+1

= (I + η⟨A⊗l
r , b̃⊗l⟩)

(
w̃t −

t∑
i=1

(I + η⟨A⊗l
r , b̃⊗l⟩)t−iÊi

)
− Êt+1

= w̃t+1 −
t∑

i=1

(I + η⟨A⊗l
r , b̃⊗l⟩)t+1−iÊi − Êt+1

= w̃t+1 −
t+1∑
i=1

(I + η⟨A⊗l
r , b̃⊗l⟩)t+1−iÊi

= w̃t+1 −Et

Therefore, we can then use a version of Lemma 13 and Lemma 2 in (Ma et al., 2024) with U = ⟨A∗
rA,M∗⟩ replaced with

U = ⟨Ar, b̃⟩1 to prove this theorem, following the steps in proof to Theorem 1 in (Ma et al., 2024).

Proof to Theorem 5.1. For the general matrix completion case, as promised by Lemma 3.1, the theorem is proved by
substituting Ls = 1, αs = ϵ2 into Theorem 5.1, and since this is a deterministic result, it happens with probability 1,
meaning that for any second-order point ŵ = X̂⊗l of (12), it satisfies that

∥M∗ − X̂X̂⊤∥F <

√
Ls

αs
λr(X̂X̂⊤) tr(M∗) +

ϵ2∥M∗∥2
Ω̄,F

ϵ2

=

√
Ls

αs
λr(X̂X̂⊤) tr(M∗) + ∥M∗∥2

Ω̄,F

≤
√

Ls

αs
λr(X̂X̂⊤) tr(M∗) + ∥M∗∥Ω̄,F

=
1

ϵ
λr(X̂)

√
tr(M∗) + ∥M∗∥Ω̄,F

(50)

where l has to obey equation (14) as stated in Theorem 4.1.
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In the case of each entry of M∗ being observed independently with probability p, we first apply Theorem 5.1 with w̃ = 0 to
(7), meaning that we first assume that no noise exists in b. This is the case where we are actually trying to recover the global
solution of (7), denoted as M†. This means that for any rank-1 critical point ŵ = X̂⊗l of (12), it is a second-order point
only if

∥X̂X̂⊤ −M†∥2F <
1

ϵ2
λr(X̂X̂⊤) tr(M∗) (51)

holds, when l is odd and satisfies

l >
1

1− log2(2β)
, β :=

Ls tr(M
∗)λr(X̂X̂⊤)

ϵ2∥M∗ − X̂X̂⊤∥2F
. (52)

The above statement holds deterministically. However, Theorem 3.2 also tells us that

∥M† −M∗∥2F ≤ 1− p+ χ

p− χ
ϵ2∥M∗∥2F

with high probability, so then by a triangle inequality we have that the conversion criterion above transforms to

∥X̂X̂⊤ −M∗∥F ≤ ∥X̂X̂⊤ −M†∥F + ∥M† −M∗∥F

<
λr(X̂)

√
tr(M∗)

ϵ
+

√
1− p+ χ

p− χ
ϵ∥M∗∥F

(53)

with the same probability stated in Theorem 3.2, thereby concluding the proof.
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